1. Suppose \(V \) is a vector space over \(\mathbb{F} \) with \(\dim V = n \). Suppose \(T \in L(V, V) \) is an operator on \(V \). Suppose \(W_0 \) is an \(T \)-invariant subspace of \(V \) and \(v \in V \setminus W_0 \). Write \(W_1 = W_0 + \mathbb{F}[T]v \) and \[I = \{ f \in \mathbb{F}[X] : f(T)v \in W_0 \}. \]

Prove that

(a) \(I \) is a proper ideal,
(b) Let \(f \) be the MMP of \(I \). Prove that \(\dim W_1 = \dim W_0 + \text{degree}(f) \).

2. Suppose \(V \) is a vector space over \(\mathbb{F} \) with \(\dim V = n \). Suppose \(T \in L(V, V) \) is an operator on \(V \). Prove that \(V \) is cyclic if and only if \(V \) has a basis \(E \) such that with respect to \(E \) the matrix of \(T \) is the companion matrix of a monic polynomial \(p \).

3. Let \(p \) be a non-constant monic polynomial and \(A \) be the companion matrix of \(p \). Prove that \(p \) is both the MMP of \(A \) and the characteristic polynomial of \(A \).

4. Let \(T : \mathbb{F}^3 \rightarrow \mathbb{F}^3 \) be the operator defined by

\[
T(X) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix} X
\]

Prove that \(\mathbb{F}^3 \) is not \(T \)-cyclic.

5. Suppose \(V \) is a vector space over \(\mathbb{F} \) with \(\dim V = n \). Suppose \(T \in L(V, V) \) is an operator on \(V \). Suppose \(w_1, \ldots, w_r \) be such that

(a) \(V = \mathbb{F}[T]w_1 \oplus \mathbb{F}[T]w_2 \oplus \cdots \oplus \mathbb{F}[T]w_r \).

(b) Let \(p_i \) be the MMP of \(w_i \). Assume that \(p_k | p_{k-1} \) for \(k = 2, \ldots, r \).

Prove \(\text{ann}(T) = \text{ann}(w_1) = \mathbb{F}[X]p_1 \).
6. Suppose V is a vector space over \mathbb{F} with $\dim V = n$. Suppose $T \in L(V,V)$ is an operator on V. Assume W_0 is a T–admissible set and $V = W_0 + \mathbb{F}[T]v$ for some $v \in V$. Find $w \in V$ such that

(a) $V = W_0 \oplus \mathbb{F}[T]w$.

(b) Let p be the MMP of w. Prove that p is unique. That means, if $V = W_0 \oplus \mathbb{F}[T]w'$ for some w' then MMP of w' is p.

7. Suppose V is a vector space over \mathbb{F} with $\dim V = n$. Suppose $T \in L(V,V)$ is an operator on V. Then V is T–cyclic if and only if the characteristic polynomial and the MMP of T are identical.

8. Suppose V is a vector space over \mathbb{F} with $\dim V = n$. Suppose $T \in L(V,V)$ is an operator on V. Let P be the MMP of T and Q be the characteristic polynomial of T. Let p be an irreducible polynomial. Prove that

$$p \mid P \iff p \mid Q.$$

9. Given an example (with justification) of a 2×2–matrix A whose characteristic polynomial is $(1 - X)^2$.

10. Suppose V is a vector space over \mathbb{F} with $\dim V = n$. Suppose $T \in L(V,V)$ is an operator on V. Suppose the characteristic polynomial Q of T factors completely into linear factors:

$$Q = (X - c_1)^{d_1}(X - c_2)^{d_2}(X - c_k)^{d_k}$$

where c_1, \ldots, c_k are the distinct eigen values of T. Describe the Jordan matrix of T and give a short outline of the proof of existence.