1. Suppose V is vector space over \mathbb{F} with finite dim$(V) = n$. Let $T \in L(V, V)$ be a linear operator. Suppose W is a T–invariant subspace of W and $T' = T|_W$ be the restriction.

(a) Let q be the characteristic polynomial of T and Q be the characteristic polynomial of T'. Prove that $Q \mid q$.

(b) Likewise, let p bet the MMP of T and P be the MMP of T'. Prove that $P \mid p$.

2. Suppose V is vector space over \mathbb{F} with finite dim$(V) = n$. Let $T \in L(V, V)$ be a linear operator. Suppose there is a basis E of V such that the matrix A of T with respect to E is upper triangular. Prove that there is another basis E', such that with respect to E', the matrix of T is lower triangular.

3. Let V be a vector space over \mathbb{F} with with finite dimension dim $V = 3$ and $T : V \rightarrow V$ be a linear operator on V. Prove that T is triangulable if and only if the minimal polynomial p of T is a product of linear factors.

4. Let V be a finite dimensional vector space over a field \mathbb{F}.

(a) Let e_1, e_2, \ldots, e_k be elements of V. Prove that e_1, e_2, \ldots, e_k are linearly independent if and only if $j = 1, \ldots, k$, we have $e_j \notin \text{Span}(e_1, e_2, \ldots, e_{j-1})$.

(b) Let W_1, \ldots, W_k be subspaces of V. Prove that $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$ if and only if $V = W_1 + W_2 + \cdots + W_k$ and for each $j = 2, \ldots, k$, we have

$$(W_1 + \cdots + W_{j-1}) \cap W_j = \{0\}.$$
(a) $E_i E_j = 0 \quad \forall \quad i \neq j.$
(b) $E_1 + E_2 + \cdots + E_k = I.$

Write $W_i = E_i(V)$. Prove that E_i is a projection and

\[V = W_1 \oplus W_2 \oplus \cdots \oplus W_k. \]

6. Let V be a finite dimensional vector space over a field \mathbb{F} and W be a subspace of V. Prove that there is subspace U of V such that $V = W \oplus U$.

7. Let $V = \mathbb{R}^2$.
 (a) Write down the the projection $\pi : V \to V$ to the line $y = x$.
 (b) Let $\mathbf{e} = (0, 1) \in V$. Write down the projection $p : V \setminus \{P\} \to V$ to the x–axis from the point P. Is it linear?

8. Let V be a vector space over \mathbb{F} with finite dimension $\dim V = n$ and $T : V \to V$ be a linear operator on V. Let p be the minimal monic polynomial (MMP) of T and

\[p = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k} \]

where $r_i > 0$ and p_i are distinct irreducible monic polynomials in $\mathbb{F}[X]$. Let

\[W_i = \{v \in V : p_i(T)^{r_i}(v) = 0\} \]

be the null space of $p_i(T)^{r_i}$.

(a) Prove that W_1 is invariant under T.
(b) Let

\[f_1 g_1 + f_2 g_2 + \cdots + f_k g_k = 1 \]

where $f_i = \prod_{j \neq i} p_j^{r_j}$. Prove that $W_1 = f_1 g_1(T)(V)$.
(c) Prove that $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$.
(d) Let $T_1 = T|_{W_1}$ be the restriction of T. Prove that MMP of T_1 is $p_1^{r_1}$.

2