1. Let V be a vector space over F and W be a non-empty subset of V. Prove that the following are equivalent:

(a) W is a subspace of V.
(b) For $u, v \in W$ and $c, d \in F$ we have $cu + dv \in W$.
(c) For $u, v \in W$ and $c \in F$ we have $u + v \in W$ and $cu \in W$.
(d) For $u, v \in W$ and $c \in F$ we have $cu + v \in W$.

2. Let V be a vector space over F and S be a non-empty subset of V.

(a) Define the subspace spanned by S. Write $W = \text{Span}(S)$.
(b) Prove that if U is a subspace of V containing S, then W is contained in U.
(c) Prove

$$W = \{c_1v_1 + c_2v_2 + \cdots + c_nv_n : n \geq 0, c_i \in F, v_i \in S\}.$$
3. Let \(V \) be a vector space over \(F \) and \(V \) is spanned by a finite set \(S = \{v_1, \ldots, v_n\} \). Prove that a subset of \(S \) will form a basis of \(V \).

4. Let \(V \) be a finitely dimensional vector space over \(F \) let \(S = \{v_1, \ldots, v_n\} \) be a linearly independent subset. Prove that \(S \) extends to a basis of \(V \). \((\text{We really do not need to assume that } V \text{ has finite dimension.}) \)

5. Let \(V \) be a vector space over \(F \) and \(V \) is spanned by a finite set \(S = \{v_1, \ldots, v_n\} \). Prove that any two basis of \(V \) have same number of elements. \((\text{We really do not need to assume that } S \text{ is a finite set.}) \)

6. Let \(V \) be a vector space over \(F \) and \(W_1, W_2 \) be two subspaces of \(V \). Assume \(W_1 + W_2 \) has finite dimension. Prove that
\[
\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).
\]

7. Let \(A, B \) be two \(m \times n \) matrices with entries in \(F \). Prove that \(A \) and \(B \) have same row space if and only if they are row equivalent.

8. Let \(V = F[X] \) be set of all polynomials over \(F \). Prove that, as a vector space, \(V \) does not have finite dimension.