Modular Catalan Numbers, Generalized Motzkin Numbers, and the Tamari Order

Nickolas Hein
University of Nebraska at Kearney

21 May 2016, Lawrence

Joint work with
Jia Huang, UNK
• **: arbitrary binary operation on \(\mathbb{C} \)

 Notation: \(ab \) means \(a \ast b \).

• Without left-to-right convention, \(abc \) is ambiguous.

• The “product” \(A_n := a_0a_1 \cdots a_n \) has more ambiguity for larger \(n \).

• **Catalan number** \(C_n := \frac{1}{n + 1} \binom{2n}{n} \) measures this ambiguity (for general \(\ast \)) as it enumerates parenthesizations of \(A_n \).
 e.g., \(C_3 = 5 \) counts parenthesizations of 4 factors:

 \[
 ((ab)c)d \quad (ab)(cd) \quad (a(bc))d \quad a((bc)d) \quad a(b(cd))
 \]

• Special case: \(\ast \) associative \(\implies \) no ambiguity

 \[
 ((ab)c)d = (ab)(cd) = (a(bc))d = a((bc)d) = a(b(cd))
 \]
Use left-to-right convention for ambiguous products.

Def $*$ is *k*-associative if for every A_{k+1},

$$(a_0 a_1 \cdots a_k) a_{k+1} = a_0 (a_1 a_2 \cdots a_{k+1})$$

Examples

- $a * b := a + b$ is 1-associative because addition is associative.
- $a * b := -a + b$ is 2-associative:

 $$(abc)d = -a + b - c + d = a(bcd)$$

- If $\omega^k = 1$, then $a * b := \omega a + b$ is k-associative:

 $$(a_0 a_1 \cdots a_k) a_{k+1} = \omega^{k+1} a_0 + \omega^k a_1 + \cdots + \omega a_k + a_{k+1} = \omega a_0 + \omega^k a_1 + \omega^{k-1} a_2 + \cdots + a_{k+1} = a_0 (a_1 a_2 \cdots a_{k+1})$$

- This talk: $a * b := \omega a + b$ where ω is a primitive kth root of unity.
• Let x_i denote a \mathbb{C}-valued variable.

• A parenthesization $P(X_n)$ of $X_n := x_0 x_1 \cdots x_n$ induces a function $\phi_P : \mathbb{C}^{n+1} \to \mathbb{C}$ by $(x_0, \ldots, x_n) \mapsto P(X_n)$.

• Parenthesizations are k-equivalent if they induce the same function by the k-associativity of \ast.

• **Def** The modular Catalan number $C_{k,n}$ enumerates the (distinct) functions of the form $\phi_P : \mathbb{C}^{n+1} \to \mathbb{C}$.

• **Rmk 1** All parenthesizations are 1-equivalent (addition is associative), so $C_{1,n} = 1$.

• **Rmk 2** If $k \geq n$, no parenthesizations are equivalent, so $C_{k,n} = C_n$.
A few values of $C_{k,n}$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>OEIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{1,n}$</td>
<td>1</td>
<td>A000012</td>
</tr>
<tr>
<td>$C_{2,n}$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>A000079</td>
</tr>
<tr>
<td>$C_{3,n}$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>13</td>
<td>35</td>
<td>96</td>
<td>267</td>
<td>750</td>
<td>2123</td>
<td>6046</td>
<td>A005773</td>
</tr>
<tr>
<td>$C_{4,n}$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>41</td>
<td>124</td>
<td>384</td>
<td>1210</td>
<td>3865</td>
<td>12482</td>
<td>A159772</td>
</tr>
<tr>
<td>$C_{5,n}$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>42</td>
<td>131</td>
<td>420</td>
<td>1375</td>
<td>4576</td>
<td>15431</td>
<td>new</td>
</tr>
<tr>
<td>$C_{6,n}$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>42</td>
<td>132</td>
<td>428</td>
<td>1420</td>
<td>4796</td>
<td>16432</td>
<td>new</td>
</tr>
<tr>
<td>$C_{7,n}$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>42</td>
<td>132</td>
<td>429</td>
<td>1429</td>
<td>4851</td>
<td>16718</td>
<td>new</td>
</tr>
<tr>
<td>$C_{8,n}$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>42</td>
<td>132</td>
<td>429</td>
<td>1430</td>
<td>4861</td>
<td>16784</td>
<td>new</td>
</tr>
<tr>
<td>$C_{\infty,n}$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>42</td>
<td>132</td>
<td>429</td>
<td>1430</td>
<td>4862</td>
<td>16796</td>
<td>A000108</td>
</tr>
</tbody>
</table>

Table: Modular Catalan number $C_{k,n}$ for $n \leq 10$ and $k \leq 8$.
• C_n counts parenthesizations of $n + 1$ factors ($*$ is applied n times)
• C_n counts (full binary) trees of $n + 1$ leaves (n internal nodes)
• The bijection between these enumerated sets is natural.
• Given by replacing $*$ by \land, an operation that joins trees to a common ancestor to form a larger tree.
Warm up:

- Which of these parenthesizations are 1-equivalent?
- Which of these parenthesizations are 2-equivalent?
- Which of these parenthesizations are 3-equivalent?
• **Def** A *(left)* *k-comb* is a tree associated to $x_0 x_1 \cdots x_k$.

![Example of a 3-comb](image)

e.g., a 3-comb

• **Def** A *(left)* *k-hook, hook*$_k$, is a tree associated to $x_0 (x_1 x_2 \cdots x_k)$.

![Example of a 3-hook](image)

e.g., the 3-hook

• *k-equivalence* of parenthesizations induces an equivalence relation on trees, also called *k-equivalence*.

Theorem (H.–Huang)

$C_{k,n}$ is the number of trees with $n + 1$ leaves with no k-hook subtrees.
• **Def** The generalized Motzkin number $M_{k,n}$ is the number of binary trees with $n + 1$ leaves avoiding the k-comb as a subtree.

• $M_{3,n}$ is known as the Motzkin number (the number of ways to draw non-intersecting chords between n points of a circle).

• Tree rotations useful for studying $C_{k,n}$ and $M_{k,n}$

• A right (or left) rotation of a tree with 3 leaves changes the structure of the trees without disturbing the order of the leaves:

Let s and t be trees with $n + 1$ leaves. We say $s \succ t$ (s covers t) if s may be obtained from t by applying a right rotation to a subtree of t.
• **Example** A tree covering relation:
• Relation \geq generates a partial order on trees with $n + 1$ leaves called the Tamari order.
• e.g., $n = 4$
• Two parenthesizations are equivalent if one may be obtained from the other by a combination of interchanging k-combs and k-hooks, without changing the order of the other subtrees.

• e.g., a chain of 2-equivalences 4-trees

![Diagram of 4-trees showing 2-equivalences]

• **Rmk** The first interchange is given by applying 2 left rotations and the second is given by applying 2 right rotations.

• **Def** The operation of replacing a k-hook subtree by a k-comb subtree without altering the rest of the tree is called a *left k-rotation* (it is a certain combination of k left rotations).

• **Def** The inverse of a left k-rotation is called a *right k-rotation*.
• Write $s \geq_k t$ if tree s may be obtained from tree t by a right k-rotation
• Induces the k-associative order, weakening of the Tamari order.
• e.g., $n = 4$, $k = 1$ (left) and $k = 2$ (right)
Theorem (H.–Huang)

Each connected component of the k-associative poset of n-trees has a unique minimal element.

- Note $C_{k,n}$ is the number of minimal elements in the k-associative order and $M_{k,n}$ is the number of maximal elements.

Theorem (H.–Huang)

For each $k > 0$, the sequences of modular Catalan numbers and of generalized Motzkin numbers are interlaced:

$$C_{k,1} \leq M_{k,1} \leq C_{k,2} \leq M_{k,2} \leq \cdots C_{k,n} \leq M_{k,n} \leq \cdots.$$
Theorem (Rowland)

If \(t \) is a \(k \)-tree and \(T_n \) is the number of \(n \)-trees that avoid subree \(t \), then the sequence \(\{ T_n \} \) has an algebraic generating function.

Rmks

• Rowland’s proof is constructive, so his methods could be used to find the generating function \(C_k(x) \) of the sequence \(\{ C_{k,n} \}_{n=0}^{\infty} \).
• Instead, we exploit the close relationship between \(C_{k,n} \) and \(M_{k,n} \) to find a polynomial relation on \(C_k(x) \).

Theorem (H.–Huang)

The generating function \(C_k(x) \) of the sequence \(\{ C_{k,n} \}_{n=0}^{\infty} \) satisfies the polynomial equation

\[
x(C_k(x) - 1)^k - xC_k(x)^k + C_k(x)^{k-1} - C_k(x)^{k-2} = 0.
\]
Lagrange inversion give the following:

Theorem (H.–Huang)

If \(n \geq 1 \) and \(k \geq 1 \) then

\[
C_{k,n} = \sum_{1 \leq \ell \leq n} \frac{\ell}{n} \sum_{m_1 + \ldots + m_k = n} \sum_{m_2 + 2m_3 + \ldots + (k-1)m_k = n - \ell} \binom{n}{m_1, \ldots, m_k}.
\]

Rmk One may write this using the monomial symmetric functions \(m_\lambda \).

\[
C_{k,n} = \sum_{\lambda \subseteq (k-1)^n, \; |\lambda| < n} \frac{n - |\lambda|}{n} m_\lambda(1^n)
\]
Natural question

What binary operations lead to sequences of numbers not described here?

What subtree avoidance rules may be described using binary operations?
Thank you!