12/2/2013

- **Subject**: Applications of Integration
 - Physics
 - Probability
- **Sections**: 6.6; 6.7; 6.8
- **Next**: Summary of what do we know well at the end of the semester.
Great Opportunity:

Extra Credit:

- Reflections from the Math 121 Classroom - 3 weeks before the Final Exam: 10 pts

- Reports from 3 talks with 3 guest speakers, 5 pts each, $\frac{1}{2}$ page

- Participating in the evaluation of lecture and labs, 5 pts
Goals:

- of Students
- of Lab Instructors
- of the Coordinator

Let us think of them.

Thank you!!

Dziekuje!!
Probability - Introduction to Math 526 - Probability and Statistics

Probability density function

\[f: \quad f(x) \geq 0 \text{ for all } x \quad \text{and} \quad \int_{-\infty}^{\infty} f(x) \, dx = 1. \]

Example:

Let \(f(x) = \begin{cases} kx^2(1-x) & \text{if } 0 \leq x \leq 1 \\ 0 & \text{if } x < 0 \text{ or } x > 1 \end{cases} \)

Q: (a) For what value of \(k \) is \(f \) a probability density function?

(b) For that value of \(k \), find \(P(X \geq \frac{1}{2}) \)

(c) Find the expected value of \(X \).
Solution:

\[1 = \int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{\infty} k x^2 (1-x) \, dx \]

\[= k \int_{0}^{1} (x^2 - x^3) \, dx = k \left[\frac{x^3}{3} - \frac{x^4}{4} \right]_0^1 \]

\[= k \left[\left(\frac{1}{3} - \frac{1}{4} \right) - 0 \right] = k \cdot \frac{1}{12} \]

\[\Rightarrow \quad 1 = k \cdot \frac{1}{12} \quad \iff \quad k = 12 \]

\[\Rightarrow \quad f(x) = \begin{cases} 12x^2(1-x) & \text{if } 0 \leq x \leq 1 \\ 0 & \text{if } x < 0 \text{ or } x > 1 \end{cases} \]

is the probability density function.

(b) \quad P(X \geq \frac{1}{2}) = \int_{\frac{1}{2}}^{1} 12(x^2-x^3) \, dx

\[= \lim_{t \to \infty} \int_{\frac{1}{2}}^{t} 12(x^2-x^3) \, dx = \lim_{t \to \infty} 12 \left[\frac{x^3}{3} - \frac{x^4}{4} \right]_{\frac{1}{2}}^{t} \]

but observe that \(f(x) = 0 \) for \(x > 1 \)
\[\int_{\frac{-3}{2}}^{1} 12(x^2-x^3) \, dx \]

\[= \int_{\frac{-3}{2}}^{1} 12(x^2-x^3) \, dx \]

\[= 12 \left[\frac{x^3}{3} - \frac{x^4}{4} \right]_{\frac{-3}{2}}^{1} = 12 \left[\frac{1}{12} - \left(\frac{1}{24} - \frac{1}{64} \right) \right] \]

\[= 12 \left[\frac{1}{12} - \frac{1}{24} + \frac{1}{64} \right] \]

\[= 1 - \frac{1}{2} + \frac{3}{16} \]

\[= 1 - \frac{8}{16} + \frac{3}{16} = \frac{11}{16} \]

Recall:

\[0 \leq P(A) \leq 1 \]

with \(P(\emptyset) = 0 \)

and \(P(\Omega) = 1 \)

\[P(A) = 1 \Rightarrow A = \Omega \]
(c) Expected Value:

$$EX := \int_{-\infty}^{\infty} x f(x) \, dx$$

$$= \int_{0}^{1} 12x (x^2 - x^3) \, dx$$

$$= \int_{0}^{1} 12 (x^3 - x^4) \, dx$$

$$= 12 \left[\frac{x^4}{4} - \frac{x^5}{5} \right]_{0}^{1} = 12 \left(\frac{1}{4} - \frac{1}{5} \right)$$

$$= 12 \frac{1}{20} = \frac{6}{10} = 0.6$$

Standard Normal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

$$\sigma = 1 \text{ and } \mu = 0$$
Newton's Second Law of Motion:

\[F = m \frac{d^2s}{dt^2} \]

- **Position** \(s(t) \)
- **Mass** \(m \) in kg
- **Force** in newtons
- **Work done** in moving the object from \(a \) to \(b \):

\[W = \int_a^b f(x) \, dx \]

- **Force** acts on the object
Example:
A particle is moved along the x-axis by the force that measures \(\frac{10}{(1+x)^2} \) pounds at a point \(x \) feet from the origin. Find the work done in moving the particle from the origin to a distance of 9 ft.

Solution:
\[
W = \int_0^9 \frac{10}{(1+x)^2} \, dx = 10 \left[-\frac{1}{1+x} \right]_0^9 = 10 \left(-\frac{1}{10} + 1 \right) = \frac{9}{10}
\]

\[
\int \frac{1}{(1+x)^2} \, dx = \int \frac{1}{u^2} \, du = \int u^{-2} \, du = \frac{u^{-1}}{-1} = -\frac{1}{1+x}
\]

\[
1 + x = u \quad \Rightarrow \quad dx = du
\]
Moments and center of mass

Example:
Masses are located at the points \(P_i \):
\[m_1 = 6, \quad m_2 = 5, \quad m_3 = 10 \]
\[P_1(1, 5); \quad P_2(3, -2); \quad P_3(-2, -1) \]

Find the moments \(M_x \) and \(M_y \) and the center of mass of the system:

\[
M_x = \sum m_i y_i \\
= 6 \cdot 5 + 5 \cdot (-2) + 10 \cdot (-1) \\
= 10
\]

\[
M_y = \sum m_i x_i \\
= 6 \cdot 1 + 5 \cdot 3 + 10 \cdot (-2) \\
= 6 + 15 - 20 \\
= 1
\]

The center \((\bar{x}, \bar{y}) = \left(\frac{M_y}{m}, \frac{M_x}{m} \right)\) is:

\[
= \left(\frac{1}{21}, \frac{10}{21} \right)
\]
Consumer Surplus for the commodity

\[\int_0^x [p(x) - P] \, dx \]

The consumer surplus represents the amount of money saved by consumers in purchasing the commodity at price \(P \) corresponding to an amount demanded of \(x \).

The figure above shows the interpretation of the consumer surplus as the area under the demand curve and above the line \(p = P \).
Example:
A demand curve is given by
\[p = \frac{450}{x + 8} \]
Find the consumer surplus when the selling price is $10.

Solution:
The consumer surplus is:
\[\int_{0}^{10} \left(\frac{450}{x + 8} - p \right) \, dx \]
where \(p = p(x) = p(10) = \frac{450}{10 + 8} = \frac{450}{18} = 25 \)

\[= \int_{0}^{10} \left(\frac{450}{x + 8} - 25 \right) \, dx = \left[450 \ln(x + 8) - 45 \right]_{0}^{10} \]
\[= 450(\ln 18) - 450 - 450 \ln 8 \]
\[= 450 \left(\ln 18 - \ln 8 - 1 \right) \]
\[= 450 \left(\ln 2 + 2 \ln 3 - 3 \ln 2 + 1 \right) \]
Review: -10-

- Sec. 6.6:
 Examples: 1, 6

- Sec. 6.7: 1

- Sec. 6.8: 1, 3, 4.

Q: Which topic from the course is your favorite one? Why?

Essay Question. Think of it.

Q: Which application of calculus is the most fascinating for you? Think of it.