2014 ACC WORKSHOP PROPOSAL

Ubiquitous Hands-On Learning: The Future of Engineering Education

Organized by the Center for Mobile Hands-On STEM
Endorsed by the IEEE Control Systems Society Technical Committee on Education

Rationale: Studies have demonstrated that concrete experimentation improves student understanding of abstract concepts and motivates students by providing examples of theory in practice. The model of having traditional, centralized laboratories requires expensive equipment and personnel; furthermore, students have limited access to these resources. Development of inexpensive and portable USB-powered oscilloscopes, function generators, microcontroller boards, and other portable electronic equipment has facilitated a new model of engineering education where hands-on experiences can be done ubiquitously anytime anywhere. Students can explore the theoretical concepts introduced in lectures with hands-on activities either immediately in the classroom or at home rather than waiting for a scheduled laboratory time.

Benefits to Students: tools immediately and readily available for design projects, design competitions, and to just tinker and follow their own creativity to new areas of discovery. Online and distance learning students have equal access to hands-on activities as do on-campus students.

Benefits to Instructors: new way to facilitate inquiry-based learning through hands-on activities. They can develop course content anywhere and anytime; new ideas for labs, activities, and projects can be easily tried out at home rather than waiting until lab classrooms and technical staff are available. With minimum resources, teachers can easily integrate mobile hands-on activities into their courses.

Benefits to Institutions: new options for incorporating practical lab experiences into their curriculum without the need for expensive equipment and dedicated lab space since students have their own equipment.

Target Audience:

Who should come to the workshop? Engineering administrators, instructors, laboratory staff, graduate students and post-docs interested in academic careers in all engineering disciplines.

Why should you come? Learn different models for the effective implementation of hands-on learning: 1) hands-on experiences in traditional lecture-based courses; 2) lab courses where students own their own equipment and do the labs at home; 3) studio classes; 4) flipped classes; and 5) online lab courses. Experience the use of several different mobile learning platforms for measuring and analyzing physical phenomena, designing circuits, and learning programming. Participants will use a selection of...
low-cost electronic boards and portable instruments, which include the National Instruments' myDAQ, Digilent’s Analog Discovery board, and ARM’s mbed microcontroller platform to carry out a number of experiments during the workshop. The experiments will demonstrate the range of hands-on activities and some of the diverse theoretical concepts that can be taught via active hands-on learning. Participants will leave the workshop with a set of tested experimental procedures and other instructional resources.

Presenters:

The presenters of the workshop, Bonnie Ferri and Al Ferri (TESSAL Center, Georgia Tech) and Deborah Walter (Rose-Hulman), have been engaged in pedagogical research on active learning and have designed, implemented, and assessed hands-on activities in numerous courses during their academic careers. In addition, the workshop organizers include Kathleen Meehan (University of Glasgow) and Jim Hamblen (Georgia Tech), who have collaborated as part of the multi-institutional Center for Hands-On STEM, along with colleagues from Howard, Morgan State, and Albany to present this material to facilitate the development of the common themes that have developed from their research. This workshop is partially supported by an NSF TUES Grant (Award 0817102) and technical support from Digilent, with likely support from ARM and National Instruments.

ACTIVE LEARNING: Students working on hands-on activities at their desks during a regular lecture period in a regular lecture room.

Expected Enrollment: A very similar workshop was held at the ASEE Annual Exposition and Conference in 2012 and again in 2013. The attendance was 25 in the first offering and 40 in the second. We can handle up to 50 participants.

This workshop is supported by an NSF TUES Grant (Award 0817102) and technical support from Digilent. We will request similar technical support from ARM and National Instruments (they both gave their support for an earlier version of this workshop presented in conjunction with an American Society of Engineering Education conference). This workshop was also discussed at the last meeting of the IEEE Control Systems Society Technical Committee on Education, where the workshop was endorsed and encouraged to be offered at the ACC.
Half-Day Format Tentative Schedule:

Models of Ubiquitous Hands-On Education (30 Min)

myDAQ Platform Hand-On Activities and Demonstrations (1 hour)
- Hands-on activities showing the time response and frequency response of underdamped and overdamped second-order circuits.
- Demonstration of PID motor control experiment
- Demonstration and presentation of the impulse response, frequency response, and initial condition response of a vibratory system (guitar string)

Break (15 Min)

Mbed microcontroller Platform Hands-On Activities and Demonstrations (45 min)
- Demonstration of a temperature controller built with an mbed kit
- Hands-on activity where participants build a very simple code and implement it on the mbed

Pedagogical Discussion: Models of Learners (15 Minutes)

Discovery Board Platform Hands-On Activities and Demonstrations (1 hour)
- Hands-on activity to run a filtering experiment to remove 60 Hz noise
- Demonstration of the use of MATLAB to control the Discovery Board

Summary and Discussion (15 Minutes)

Logistics

Participants will be given free software ahead of time to download to their computers. The organizers will bring approximately 20 myDAQ boards and breadboard kits, 20 Digilent Discovery Boards and breadboard kits, and 20 mbed kits for the hands-on activities. During those activities, the participants will work in groups of 2-3 on experimental activities that are related to systems and controls topics. This hands-on exposure will give the participants an understanding of the potential impact on student learning from the use of the mobile, student-owned platforms. Additional hardware will be brought for demonstrations of other experiments that students do on their own.
Abstracts:

Models of Ubiquitous Hands-On Education

This section discusses three particular models of implementing hands-on activities in a curriculum: small in-class activities in lecture-based courses, student-owned equipment in lab courses for students to complete at home or at school, and mobile studios where the hands-on activity is fully integrated into a lecture class. These three models use different strategies and take different levels of commitment from universities and from instructors. The first one, in-class experiments on a small-scale level, aims at targeted intervention and has the lowest threshold for instructors, students, and administrations. The mobile studios model has the highest threshold but may have the largest impact by fully integrating classes with hands-on activities. The model where regular, full-scale labs are done by students using student-owned equipment can serve to replace the centralized laboratory model, which is costly to universities, with a mobile version where students have more time to explore the lab activities. Assessment results on how well these methods work will be included in the presentation.

myDAQ Platform Demonstrations and Hands-On Activities

- Hands-On Activity of a Second-Order Response
- Demonstration of PID motor control experiment
- Demonstration and presentation of the impulse response/frequency response of a vibratory system

Software coupled with the myDAQ board converts a laptop into a suite of instruments including a function generator, oscilloscope, dynamic spectrum analyzer, automated Bode plot generator, and digital I/O interfaces. Georgia Tech now requires all ECE students and all students taking the circuits course for non-majors to purchase the myDAQ board and a small parts kit. The price for this unit is about the same as a textbook. This is a total of 1000 students per term using these devices in one of several lecture-based core courses: ECE2020 Fundamentals of Digital Design, ECE2040 Circuits, ECE 3084 Signals and Systems, ECE 3710 Circuits and Electronics (for nonmajors). The overview of the logistics and the impact on learning of using hands-on activities in lecture-based courses will be presented in the first session (above), but the real impact will be felt here where the participants will see for themselves what students experience.

This session will give a hands-on demo of the platform by having participants experiment with a series RLC circuit where students use a potentiometer to adjust the resistance to get underdamped, critically damped, and overdamped behavior. The participants will see how to use the board for both time domain and frequency domain measurements. The two additional demos will feature a small, inexpensive PID motor control experiment that works with the myDAQ unit and a guitar string experiment. The guitar string is an engaging system for students to use because of the tie to music. The model of the system will be shown along with how that model can be used for students to learn about transfer functions, controllability and observability, light damping, initial condition responses, impulse responses, and frequency responses.
Mbed microcontroller Platform Hands-On Activities and Demonstrations

Demonstration of a temperature controller built with an mbed kit
Hands-on activity to build a simple code and implement it on the mbed

The mbed is a low-cost microcontroller built by ARM that has a very large community providing a large library of online resources and very easy to use support. Embedded computers make up about 90% of all computer applications, so exposure early to these devices is beneficial to all engineering students. Many of the applications of embedded computers include system monitoring and control. Georgia Tech teaches two sophomore-level courses involving programming, both of which require students to purchase an mbed kit (cost of $95). This session will feature a demonstration of a temperature controller project that was given to students in the C++ programming class. As part of the project, students build the temperature controller from parts in their mbed kit and then program it. This is a nice illustration of crossover technology from the controls domain into a programming class. A hands-on activity is planned for the workshop participants to implement a very simple program on the microcontroller to see how easy it is for students and faculty to use in courses.

Pedagogical Discussion: Models of Learners

Models of Learners

It's commonly accepted that laboratory exercises are a critical component to developing engineering skills. Lab classes represent a significant portion of curricula of all engineering disciplines. Lab exercises in introductory courses are commonly designed to illustrate and demonstrate known concepts or scientific laws. Students also learn practical skills associated with the measurements techniques and experience in the use of modern instrumentation. Other goals of the lab experience are to sharpen observational skills, work in teams, and develop a capacity for independent learning by encouraging students to make self-directed inquiries and explorations. Research in how students learn suggests that when students are actively engaged in the course material they maximize their understanding. Therefore, the laboratory experience is both a critical and a potentially rich learning environment for the development of engineering knowledge and skill. In this session we will document our model of engineering pedagogy that builds on years of experimentation with and without mobile platforms. We will include a review of what the Mobile Hands On STEM team has learned about 1) the depth of learning, 2) short- and long-term retention that results from increased enthusiasm as a result of experiences in active learning, 3) confidence building in engineering skills particularly among underrepresented students, and 3) evidence that engaging in active learning and having the equipment readily available stimulates student creativity and inventiveness.

Discovery Board Platform Hands-On Activities and Demonstrations

Hands-on activity to filter 60-Hz noise from a 600 Hz signal using an active high-pass filter
Demonstration using Matlab to interface with the Discovery Board and generate a custom signal

The Analog Discovery board by Digilent (cost of $99) functions similarly to the National Instruments myDAQ and the Mobile Studio. Connected to a PC by USB, the Discovery board can analyze both analog and digital signals mimicking the functionality of a digital oscilloscope and logic analyzer. It has a built-in +/-5Volt DC-power supply, waveform generator, digital pattern generator and voltmeter. In this hands-on activity, participants will use the Discovery board to filter noise in a signal processing experiment. The Discovery board will be used to generate a desired signal at 600 Hz corrupted by an equally strong 60-Hz noise signal. Participants will build a high-pass filter using an op-amp and a few components. The noisy signal and filtered signal can be observed using the oscilloscope function, demonstrating the filtering
concept by observing the time-response signal. The network analyzer feature of the Discovery board will be used to sweep the frequency of the input signal, measure the output of the high-pass filter, and create a Bode plot, demonstrating the filter's effect in the frequency domain.

The workshop moderators will also demonstrate the use of Matlab to control the Discovery Board. The Matlab interface gives users the ability to generate, manipulate, and interactively utilize their collected data. This feature can be used to build and test real control systems as a part of a classroom demonstration or an assignment to be completed by the students at home. This activity not only deepens their understanding of the non-ideal effects of their models, but the activity also can reinforce their Matlab skills.
Curriculum Vitae

Bonnie Heck Ferri
Professor and Associate Chair for Undergraduate Affairs
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332

Professional Preparation
B.S., Electrical Engineering, University of Notre Dame, 1981
M.S. Mechanical and Aerospace Engineering, Princeton University, 1984
Ph.D. Electrical Engineering, Georgia Tech, 1988

Professional Appointments
Associate Chair for Undergraduate Affairs, School of ECE, Georgia Tech, Jan. 2013- present
Associate Chair for Graduate Affairs, School of ECE, Georgia Tech, July 2006 – Dec. 2012
Professor, School of ECE, Georgia Tech, September 2002 – present
Associate Professor, School of ECE, Sept. 1995 – Sept. 2002
Assistant Professor, School of EE, Sept. 1988 - Sept. 1995
Engineer Honeywell Inc., Clearwater, FL, August 1983 - June 1985

Related Publications:

Selected Honors and Awards:
- NSF Presidential Young Investigator Award, 1990;
- Junior Faculty Teaching Excellence Award, 1991;
- IEEE Control Systems Magazine Outstanding Paper Award, 2004;
- Georgia Tech Women’s Faculty Distinction Award, 2005;
- Georgia Tech ECE Faculty Outreach Award, 2006;
- IEEE Harriet B. Rigas Award from the IEEE Education Society, 2007
- Georgia Tech Faculty Awards: Class of 1934 Outstanding Use of Innovative Education Technology Award, 2012
- Georgia Tech Women in Engineering Excellence in Teaching Award, 2012

Education-Related Grants:
1. A Cohesive Program Of Experimental Modules Distributed Throughout The ECE Curriculum, National Science Foundation CCLI Program; Principle Investigators: B. Ferri (project director), J. Michaels, D. Williams; Amount Funded: $499,998.00; 08/2006 - 12/2011

2. Manufacturing Experimentation and Outreach (MENTOR); DARPA; Principal Investigators: Drs. Schrage (AE) and Rosen (ME); Amount: $991,658 (including options for additional years); 9/1/2011-8/31/2012

3. Collaborative Research: Center for Mobile Hands-On STEM, National Science Foundation; Principal Investigators: Drs. Ken Connor (RPI), Kathleen Meehan (VPI), and Bonnie Ferri and Al Ferri; NSF TUES Program, total $600,000; Georgia Tech portion is $173,000, 8/2012 -7/2014.

4. Graduate Engineering for **Women, Minorities, and Persons with Disabilities** at Georgia Tech; National Science Foundation; Principal Investigators: Drs. Heck, Llewellyn, Meyers, and Wepfer (project director); Amount Funded: $1,261,552; 1/1990 -9/1997

5. Graduate Assistance in Areas of National Need; Department of Education; Principal Investigators: Drs. Heck, Ingram, and Jokerst; Amount: $470,667; 5/1993 – 9/1995

Professional Society Involvement:
- Chair of the Technical Committee on Controls Education 1999-2001; Deputy Chair 2013-present
- Program Chair of the American Control Conference, 1998
- Associate Editor of the *IEEE Transactions on Education* 1995-1998
- Chair of the Most Outstanding Paper Award, IEEE Control Systems Magazine, 2007-2012

Outreach Activities:
- Faculty mentor and founding member of the Women in ECE organization at Georgia Tech, 2004-2009;
- participation and organization in several summer pre-college camps and workshops 2005-2010; judge at local and international competitions for the International Science and Engineering Fair (for high school students) 2008-2011
Aldo A. Ferri, Biosketch
Associate Chair for Undergraduate Studies
George Woodruff School of Mechanical Engineering

Professional Preparation

Lehigh University Mechanical Engineering BS, 1981
Princeton University Mechanical and Aerospace Engr. Ph.D., 1985

Appointments

<table>
<thead>
<tr>
<th>Title</th>
<th>Organization</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assoc.Chair for UG Studies</td>
<td>Georgia Institute of Technology</td>
<td>1/10-present</td>
</tr>
<tr>
<td>Associate Professor</td>
<td>Georgia Institute of Technology</td>
<td>5/91-present</td>
</tr>
<tr>
<td>Assistant Professor</td>
<td>Georgia Institute of Technology</td>
<td>9/85-5/91</td>
</tr>
<tr>
<td>Visiting Scholar</td>
<td>Duke University</td>
<td>8/83-9/85</td>
</tr>
<tr>
<td>Summer Engineering Employee</td>
<td>RCA Astro Electronics Division</td>
<td>5/81-9/81</td>
</tr>
<tr>
<td>Summer Engineering Employee</td>
<td>RCA Astro Electronics Division</td>
<td>5/80-8/80</td>
</tr>
</tbody>
</table>

Most Relevant Publications:

5 Other Publications:

Synergistic Activities

2) Jack M. Zeigler Woodruff School Outstanding Educator Award, May 2010; Presentation “Mechanical Engineering Education: What Should We Teach and How Should We Teach It?”

3) Hesburgh Award Teaching Fellow, 2011. Program where an experienced group of colleagues from various disciplines discuss innovative ways to improve student learning and to strengthen teaching on the Georgia Tech campus.

4) Lilly Foundation National Teaching Fellowship, 1990-1991. In addition to weekly meetings and seminars, attended two national teaching conferences where innovative teaching and learning techniques were discussed.

5) Together with electrical engineers, helped to develop a LEGO-based, classroom demonstration for closed-loop control. The closed-loop motor controller helped students to visualize the role of controller gain, quantization, nonlinearities, and instability. The demo is used in ME as well as in various ECE classes at GT.

6) Collaborative Research: Center for Mobile Hands-On STEM, National Science Foundation; Principal Investigators: Drs. Ken Connor (RPI), Kathleen Meehan (VPI), and Bonnie Ferri and Al Ferri; NSF TUES Program, total $600,000; Georgia Tech portion is $173,000, 8/2012 -7/2014.

Collaborators and Other Affiliations

Collaborators

Doug Adams (Purdue), Dr. Olivier Bauchau (Georgia Tech), Dr. Larry Bottomley (Georgia Tech), Dr. Andy Brown (UNC, Charlotte), Jayme Caspall (Georgia Tech), Dr. Ken Cunefare (Georgia Tech), Dr. Steven Hahn (Dynamic Concepts), Dr. Bonnie Heck (Georgia Tech), Dr. Dewey Hodges (Georgia Tech), Due Q. Huynh (Motorola), Dr. Jerry H. Ginsberg (Georgia Tech), Dr. Michael Leamy (Georgia Tech), Jingci Li (Scientific Atlanta), Dr. Peter Rogers (Georgia Tech), Dr. Marilyn Smith (Georgia Tech), Dr. Stephen Spriggle (Georgia Tech), George Vachtsevanos (Georgia Tech), Dr. Wayne Whiteman (Georgia Tech).
EDUCATION
The Pennsylvania State University, University Park, PA Ph.D. Electrical Engineering 1999
Dissertation Title: Parameterization of the Zeeman effect to retrieve Mesospheric temperatures from a limb-scanning microwave radiometer

The Pennsylvania State University, University Park, PA M.S. Electrical Engineering 1994
Thesis Title: A data reduction and analysis system for rocket probe measurements

The University of Maryland, College Park, MD B.S. Electrical Engineering 1990

APPOINTMENTS
2012 – present Rose-Hulman Institute of Technology Terre Haute, IN
 Associate Professor
 Taught courses in electrical engineering including electromagnetics, electrical circuits, and medical imaging

2006 – 2012 Rose-Hulman Institute of Technology Terre Haute, IN
 Assistant Professor
 Taught courses in electrical engineering including circuits and medical imaging

1999- 2006 GE Global Research Center Niskayuna, NY
 Electrical Engineer
 System design and algorithms for x-ray computed tomography medical imaging.

1994 – 1999 Pennsylvania State University State College, PA
 Research/Teaching Assistant
 Taught courses in electrical engineering and conducted research in atmospheric electrodynamics.

PROFESSIONAL EXPERIENCE
Summer Faculty Research Fellow Summers
Sensors Directorate, Air Force Research Lab, Dayton, OH 2011-2013
I worked with Electronic Warfare Techniques Development & Analysis branch to complete a modeling and simulation study that shows small, expendable UAVs, using COTS, low-accuracy DF systems successfully locate stationary, continuously transmitting emitters. I developed a Genetic Algorithm to autonomously control UAV flight paths for the emitter location.

Electrical Engineer 1999 - 2006
General Electric Global Research Center, Niskayuna, NY
As a member of the Computed Tomography Systems and Applications Laboratory at GE’s Global Research Center, I worked on a number of projects related to medical imaging and non-destructive testing. My main contributions were in the area of new system designs, algorithms for image correction and calibration, and the use of energy information in explosive detection and clinical applications. I served as a principle investigator for a NIH sponsored grant to develop dual energy algorithms for CT colonography. I am the inventor or co-inventor of 9 issued patents and 21 patent applications
SELECTED EXPERIENCE

NSF, TUES Phase 2 Collaborative Research
Center For Mobile Hands-on STEM
2002-2014

Rensselaer Polytechnic Institute (RPI) is the lead institution in this collaborate research program. Rose-Hulman Institute of Technology is working along with Georgia Tech, Virginia Tech, University of Albany, Howard University, and Morgan State University to disseminate Mobile Hands-On STEM pedagogy to the entire STEM community.

Air Force Research Laboratory, NEWSTARS
Direction Finding (DFing) Technique Using Multiple Small UAVs
2009-2011

I mentored a graduate student research project in support of the NEWSTARS project. This is an Air Force funded project utilizing technology in a multiple Unmanned Airborne Vehicle scenario that can provide a quick and effective solution to electronic emitter location problems. A total of 4 undergraduate students also worked on the project. This led to a senior project to build a bench-top prototype direction finding system completed in April 2011.

NSF STEM, RoseBUD
Rose Building Undergraduate Diversity (ROSE-BUD): Improving Enrollment and Retention of Women and Minorities in Electrical and Computer Engineering
2009-2014

Starting in August 2009, I will be the principle investigator of this project to develop a scholarship and mentoring program to encourage broader participation among women and minority students in electrical engineering. This is a five year STEM grant from the NSF, which will provide approximately $600,000 for scholarship aid to Rose-Hulman students.

SELECTED PUBLICATIONS

