Math 365 - Handout for Chapter 9

Start with a normal population \(n(\mu, \sigma) \) and a small sample \(X_1, X_2, \cdots, X_n \). Compute \(\bar{x} \) and \(s \).

(I) Estimating \(\mu \). We use the t-distribution; this probability density function (the random variable is denoted as \(T \)) depends on \(n - 1 \) (the degrees of freedom of the distribution and denoted as \(df = n - 1 \)). The graph of the t-distribution is a symmetrical bell shape curve, and as in the case of the normal distribution, for \(\alpha < .5 \), \(t_\alpha \) is defined as the point on the graph such that the area to the right of \(t_\alpha \) is \(\alpha \), i.e., \(P(T > t_\alpha) = \alpha \).

Computing \(t_\alpha \): Use TI-83 or TI-84. \(t_\alpha = \text{solve(tcdf}(X, 100, df) - \alpha, X, \{100, 100\}) \)

Confidence Interval: A 100\((1 - \alpha)\)% confidence interval for \(\mu \) is \((\bar{x} - t_\frac{\alpha}{2} \frac{s}{\sqrt{n}}, \bar{x} + t_\frac{\alpha}{2} \frac{s}{\sqrt{n}}) \).

Hypothesis Testing: Compute \(T_{test} = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} \).

\[H_0 : \mu = \mu_0 \text{ vs } H_1 : \mu < \mu_0 \quad \text{P-value} = P(T < T_{test}). \]

\[H_0 : \mu = \mu_0 \text{ vs } H_1 : \mu > \mu_0 \quad \text{P-value} = P(T > T_{test}). \]

\[H_0 : \mu = \mu_0 \text{ vs } H_1 : \mu \neq \mu_0 \quad \text{P-value} = 2P(T > |T_{test}|). \]

Reject \(H_0 \) at \(\alpha \) level of significance for \(\alpha \geq \text{P-value} \).

(II) Estimating \(\sigma \). We use the \(\chi^2 \)-distribution; this probability density function (the random variable is denoted as \(\chi^2 \)) depends on \(n - 1 \) (the degrees of freedom of the distribution and denoted as \(df = n - 1 \)). The graph of the \(\chi^2 \)-distribution is a curve to the right of \(x = 0 \). For \(\alpha < .5 \), \(\chi^2_\alpha \) is defined as the point on the graph such that the area to the right of \(\chi^2_\alpha \) is \(\alpha \), i.e., \(P(\chi^2 > \chi^2_\alpha) = \alpha \), and \(\chi^2_{1-\alpha} \) is defined as the point on the graph such that the area to the right of \(\chi^2_{1-\alpha} \) is \(1 - \alpha \), i.e., \(P(\chi^2 > \chi^2_{1-\alpha}) = 1 - \alpha \).

Computing \(\chi^2_\alpha \) and \(\chi^2_{1-\alpha} \): Use TI-83 or TI-84: \(\chi^2_\alpha = \text{solve}(\chi^2\text{cdf}(X, 100, df) - \alpha, X, \{-100, 100\}) \) and \(\chi^2_{1-\alpha} = \text{solve}(\chi^2\text{cdf}(-100, X, df) - \alpha, X, \{-100, 100\}) \).

Confidence Interval: A 100\((1 - \alpha)\)% confidence interval for \(\sigma \) is \(\left(s\sqrt{\frac{n-1}{\chi^2_{\frac{\alpha}{2}}}}, s\sqrt{\frac{n-1}{\chi^2_{1-\frac{\alpha}{2}}}} \right) \).

Hypothesis Testing: Compute \(\chi^2_{test} = \frac{s^2(n-1)}{\sigma_0^2} \).

\[H_0 : \sigma = \sigma_0 \text{ vs } H_1 : \sigma < \sigma_0 \quad \text{P-value} = P(\chi^2 < \chi^2_{test}) \]

\[H_0 : \sigma = \sigma_0 \text{ vs } H_1 : \sigma > \sigma_0 \quad \text{P-value} = P(\chi^2 > \chi^2_{test}). \]

\[H_0 : \sigma = \sigma_0 \text{ vs } H_1 : \sigma \neq \sigma_0 \quad \text{P-value} = 2\min\{1-P(\chi^2 < \chi^2_{test}), P(\chi^2 < \chi^2_{test})\}. \]

Reject \(H_0 \) at \(\alpha \) level of significance for \(\alpha \geq \text{P-value} \).