Math 601 Note about cyclic codes, permutations, cycles and orbits.
(Read if you know what all those words mean.)

The function $\pi : K^n \to K^n$ defined by $\pi(v_0v_1 \ldots v_{n-1}) = v_{n-1}v_0 \ldots v_{n-2}$ is a permutation of K^n. For each $v \in K^n$, $(v, \pi(v), \ldots, \pi^{n-1}(v))$ is a cycle of that permutation. An orbit is just the set of elements in a cycle: \{v, \pi(v), \ldots, \pi^{n-1}(v)\}, that is, the orbit ignores the order. A particular cyclic code C in K^n, as a set, is a union of orbits of π. The permutation π of K^n can also be considered a permutation of C by restriction: $\pi|_C : C \to C$. If C is a code that is not cyclic, then π does not restrict to C in the sense that the range of $\pi|_C$ would not be C.