UNIQUE FACTORIZATION IN REGULAR LOCAL RINGS

BY MAURICE AUSLANDER AND D. A. BUCHSBAUM

BRANDEIS UNIVERSITY AND BROWN UNIVERSITY

Communicated by O. Zariski, March 6, 1959

In this note we prove that every regular local ring of dimension 3 is a unique factorization domain. Nagata* showed (Proposition 11) that if every regular local ring of dimension 3 is a unique factorization domain, then every regular local ring has unique factorization.* Thus, combining these results we have that every regular local ring is a unique factorization domain.

Throughout this note R is a local ring with maximal ideal M. The definitions and notation follow those of Auslander and Buchsbaum.¹

PROPOSITION 1. Let x be in M and y in R such that a = (x):y satisfies the following conditions: (a) hd a ≤ 1 and (b) x is not in Ma. Then a = (x) and x is not a zero divisor.

Proof: Suppose x does not generate a. Since x is not in Ma, there exist a₁,...,aₙ in a (n > 0) such that x, a₁,...,aₙ form a minimal generating set for a. Let Rⁿ⁺¹ denote the direct sum of n + 1 copies of R, define f: Rⁿ⁺¹ → a by f(a₁,...,aₙ) = rox + \sum rᵢaᵢ and let K = Ker f. Since x, a₁,...,aₙ is a minimal generating system for a, we have that f is an epimorphism and K is contained in MIRⁿ⁺¹. From the exact sequence 0 → K → Rⁿ⁺¹ → a → 0 and the fact that hd a ≤ 1, we have that K is R-free. Since a is not principal, we have that hd a = 1 and thus K ≠ 0.

Let Nᵢ = (tᵢ₁,...,tᵢₘ) be a free basis for K over R (i = 1,...,m). Since a₁ is in a, we have that ya₁ = −ux for some v in v in R. Let V = (v, y, 0, ..., 0) and T = (a₁, −x, 0, ..., 0). Then V and T are in K. Let V = \sum rᵢNᵢ and T = \sum sᵢNᵢ. Now xV = −yT. Therefore we have that \sum i=1^m xᵢNᵢ = \sum j=1^m sᵢNᵢ. Since the {Nᵢ} are a free basis for K over R, we have that xᵢ = −sᵢ for all i = 1,...,m. But (x):y = a. Therefore we have that each sᵢ is in a. Since T = (a₁, −x, 0, ..., 0) = \sum j=1^m sᵢNᵢ, it follows that −x = \sum j=1^m sᵢNᵢ. Therefore x is in Ma (since K is contained in MIRⁿ⁺¹) which contradicts the fact that x is not in Ma. Thus a = (x). The fact that x is not a zero divisor follows from the assumption hd a ≤ 1 < ∞ and [2, corollary 6.3].

COROLLARY 2. Suppose p is a prime ideal in R such that dim Rₚ = 1 and hd R/p ≤ 2. Then p is a principal ideal.

Proof: Since hdₚR/p ≥ hdₚRₚ/pRₚ = gl. dim Rₚ, it follows that the gl. dim Rₚ is finite. (See reference 1, 1.6 and reference 3; VIII, 2.6.) Therefore Rₚ is a regular local ring of dimension 1 (see reference 1, 1.9). Let x₁,...,xᵣ be a minimal generating set for p. Then the xᵣ, i = 1,...,r considered as elements in Rₚ generate pRₚ. Since Rₚ is a regular local ring of dimension 1, we have that pRₚ = xᵣRₚ for some j. Let (xᵣ) = q₁ ∧ qₑ. Then qᵣ is a normal, primary decomposition for (xᵣ). From xᵣRₚ = pRₚ, it follows that one of the qᵣ is p. Let us say qᵣ = p. Then for
y in \((q_i \cap \ldots \cap q_1) - p\) we have that \((x_j): y = p\). Since \(x_j\) is not in \(\mathfrak{M} p\) and \(hd p \leq 1\), it follows from the previous proposition that \(p = (x_i)\).

Theorem 3. Let \(R\) be a local domain of dimension \(\leq 3\) such that \(hd R/p < \infty\) for all minimal prime ideals \(p\). Then \(R\) is a unique factorization domain.

Proof: Since \(R\) is a noetherian domain, it follows from reference 4; Lemma 1, pg. 408, that it suffices to show that each minimal prime ideal is principal in order to show that \(R\) is a unique factorization domain. But by Corollary 2, it will follow that a minimal prime ideal \(p\) is principal if we can show that \(hd R/p \leq 2\). Since \(hd R/p < \infty\) we have by reference 1; 3.7 and 1.3 that \(hd R/p + \text{Codim} R/p = \text{Codim} R \leq \dim R\). But \(\text{Codim} R/p \geq 1\) and \(\dim R \leq 3\). Thus \(hd R/p \leq 2\), which completes the proof.

Since every module has finite homological dimension over a regular local ring, we have established

Corollary 4. Every regular local ring of dimension \(\leq 3\) is a unique factorization domain.

Theorem 5. Every regular local ring is a unique factorization domain.

Prior to this result, Zariski proved that if every complete regular local ring of dimension 3 is a unique factorization domain, then every complete regular local ring is a unique factorization domain (unpublished). Combining this with Mori's and Krull's result that a local ring is a unique factorization domain if it's completion is a unique factorization domain, we obtain another proof of this reduction theorem.

ON THE FALSITY OF EULER'S CONJECTURE ABOUT THE NON-EXISTENCE OF TWO ORTHOGONAL LATIN SQUARES OF ORDER \(4t + 2\)

BY R. C. BOSE AND S. S. SHRIKHANDE

UNIVERSITY OF NORTH CAROLINA

Communicated by A. A. Albert, March 13, 1959

1. **Introduction.**—The purpose of this paper is to prove a general theorem on the existence of pairwise orthogonal Latin squares (p.o.l.s.) of a given order and to give a counter example to Euler's conjecture\(^3\) that there do not exist two p.o.l.s. of order \(4t + 2\).

2. **Definitions.**—An arrangement of \(v\) objects (called treatments) in \(b\) sets (called blocks) will be called a pairwise balanced design of index unity and type \((v; k_1, k_2, \ldots, k_m)\) if each block contains either \(k_1, k_2, \ldots, k_m\) treatments which are all distinct \((k_i \leq v, k_i \neq k_j)\), and every pair of distinct treatments occurs exactly in one block of the design. If the number of blocks containing \(k_t\) treatments is \(b_t\) then clearly