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Abstract. We study obstructions to existence of non-commutative crepant

resolutions, in the sense of Van den Bergh, over local complete intersections.

1. Introduction

Let R be a Gorenstein local normal domain. The following striking definition is
due to Van den Bergh (see [18], 4.1,4.2):

Definition 1.1. Suppose that there exist a reflexive module M satisfying:
(1) A = HomR(M,M) is maximal Cohen-Macaulay R-module.
(2) A has finite global dimension.

Then A is called a non-commutative crepant resolution (henceforth NCCR) of R.

It has been shown that for dimension 3 isolated, terminal singularities, the exis-
tence of projective and non-commutative crepant resolutions are equivalent ([18]).
A projective crepant resolution is a desingularization f : Y → X = Spec(R) such
that f∗ωX = ωY .

In this note we observe that the existence of non-commutative crepant resolu-
tions is rather restrictive over complete intersections with small singular locus. In
particular, they do not exist for equicharacteristic, isolated hypersurface singular-
ities of dimension 3 which are Q-factorial, or of even dimension at least 4, even
though commutative crepant resolutions are known to exist in such situation (al-
beit rarely). This is in contrast with known results in dimension 2 or 3. Our results
also provide a new perspective on NCCR in the known cases and suggest how to
build the module M in the definition of NCCR. We employ only homological meth-
ods over commutative rings, and they typically work over any field, even in some
mixed characteristic cases.

We now describe the results of the paper. In Section 2 we give relevant definitions
and preliminary results. We observe a connection between NCCR and a module-
theoretic condition known as Tor-rigidity (see Definition 2.1).

Section 3 deals with hypersurface singularity. Our main result is:

Theorem 1.2. Let R be a local hypersurface satisfying condition (R2). Assume
R̂ ∼= S/(f) where S is an equicharacteristic or unramified regular local ring and
f ∈ S is a regular element.
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(1) If dimR = 3 and the class group of R is torsion (i.e. R is Q-factorial),
then R admits no NCCR.

(2) If R has isolated singularity and dimR is an even number greater than 3,
then R admits no NCCR.

(3) Let N be the set of isomorphism classes of indecomposable maximal Cohen-
Macaulay modules over R which are not Tor-rigid. Assume that N is not
empty. Let M a module such that R|M and N ⊂ pen(M) (see Definition
2.2) for some n. If A = HomR(M,M) is (S3), then it has finite global
dimension at most dimR + n. In particular, if A is MCM, then it is a
NCCR over R.

We use this Theorem to analyze NCCRs of simple singularities in dimension 3
in 3.6.

Section 4 deals with complete intersection singularities. Here we show that if R is
regular in codimension 3 and M satisfies Serre’s condition (S3), then HomR(M,M)
can not be a NCCR. We also study general conditions for NCCR to deform. Finally,
we observe how our ideas can be applied to the characteristic p situation, where
they help explain why the non-commutative analogue of F -blowups often fail to be
crepant.

We would like to deeply thank Graham Leuschke for patiently explaining his
paper to us and pointing our some errors on an early draft. Special thanks also go
to Craig Huneke and Tommaso de Fernex for very helpful conversations.

2. Tor-rigidity and NCCR

In this section we point out some connections between NCCR and Tor-rigidity,
a technical condition well-known in commutative algebra. We begin with relevant
definitions and notations:

Let R be a local ring and M,N finite R-modules. Let M∗ := Hom(M,R) be the
dual of M . The module M is called reflexive provided the natural map M →M∗∗

is an isomorphism. The module M is called maximal Cohen-Macaulay (henceforth
MCM) if depthRM = dimR. The ring R is said to satisfy condition (Rn) if Rp is
regular for any p ∈ Spec(R) of codimension at most n. For a ring A, we will denote
by gl.dimA the global dimension of A.

For a non-negative integer n, M is said to satisfy Serre’s condition (Sn) if:

depthRp
Mp ≥ min{n, dim(Rp)} ∀p ∈ Spec(R)

Definition 2.1. A pair of R-modules (M,N) is called Tor-rigid if for any integer
i ≥ 0, TorR

i (M,N) = 0 implies TorR
j (M,N) = 0 for all j ≥ i. Moreover, M is

Tor-rigid if for all N , the pair (M,N) is Tor-rigid.

Definition 2.2. Let X ,Y be subcategories of modR. Let addX denotes the set
of all direct summands of some direct sum of modules in X . We define peR(X ,Y),
or pe(X ,Y) to be the subcategory of modR consisting of all modules C such that
there are exact sequence of either of the forms:

0→ A→ C → B → 0

0→ A→ B → C → 0
with A ∈ X and B ∈ Y. For any integer n ≥ 0 we defines the subcategories pen X
inductively as follows: pe0X = addX , pen+1 X = add(pe(addX ,pen X )). We let
pe∞ X = ∪n≥0 pen X .
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We first record a useful:

Lemma 2.3. Let R be a Cohen-Macaulay local ring, M,N are finitely generated
R-modules and n > 1 an integer. Consider the two conditions:

(1) Hom(M,N) is (Sn+1).
(2) Exti

R(M,N) = 0 for 1 ≤ i ≤ n− 1.
If M is locally free in codimension n and N satisfies (Sn), then (1) implies (2). If
N satisfies (Sn+1), then (2) implies (1).

Proof. The first claim is obvious if dimR ≤ n, as then M is free by assumptions.
By localizing at the primes on the punctured spectrum of R and using induction
on dimension, we can assume that all the modules Exti

R(M,N), 1 ≤ i ≤ n − 1
have finite length. Take a free resolution of P of M and look at the first n terms
of Hom(P,N). As all the cohomology of this complex are Ext -modules, the claim
now follows from the Acyclicity Lemma (see [6], Exercise 1.4.23).

For the second claim, one again takes a free resolution of P of M and look at
Hom(P,N). The vanishing of the Ext modules gives the long exact sequence:

0→ HomR(M,N)→ N b0 → · · · → N bn−1 → B → 0

Counting depth shows that depth HomR(M,N)p ≥ min{n + 1,depth(Np)} for
any p ∈ Spec(R), which is what we want.

�

The following result was first proved by Jothilingham ([11], Main Theorem and
the discussion of the last Proposition). For a more modern presentation, see [12].

Theorem 2.4. (Jothilingham) Let R be a local ring and M,N are finite R-modules
such that N is Tor-rigid. If Ext1R(M,N) = 0 then M∗ ⊗R N ∼= HomR(M,N) via
the canonical map. In particular, Ext1R(N,N) = 0 if and only if N is free.

Corollary 2.5. Let R be a local ring satisfying condition (R2) and (S3). Suppose
that M is a reflexive R-module giving an NCCR for R. Then any non-free module
in add(M) is not Tor-rigid.

Proof. Suppose there is a non-free summand N of M which is Tor-rigid. Then N
is reflexive, so it is (S2) and also free in codimension 2 as R is (R2). Moreover,
HomR(N,N) is (S3) as it is a summand of HomR(M,M). Lemma 2.3 and Theorem
2.4 combine to imply that N is free, contradiction. �

In the next section, we shall prove a partial converse to this Corollary for hyper-
surfaces.

Remark 2.6. Suppose that R is a local ring which is (R2) and (S3). Then an
reflexive ideal I representing a non-trivial element in the class group of R must not
be Tor-rigid. Indeed, we have HomR(I, I) ∼= R satisfies (S3).

In general, it is a very delicate problem to decide whether a module (or a pair)
is Tor-rigid. In the hypersurface case, however, there has been recent progress. We
summarize the relevant results in:

Theorem 2.7. Let R be a local hypersurface with isolated singularity. Assume
R̂ ∼= S/(f) where S is an equicharacteristic or unramified regular local ring and
f ∈ S is a regular element. Let M be a finite R-module.
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(1) If [M ] = 0 in G(R)Q, the reduced Grothendieck group of finite R-modules
with rational coefficients, then M is Tor-rigid.

(2) If dimR = 3 and the class group of R is torsion (i.e. R is Q-factorial),
then M is Tor-rigid.

(3) Assume dimR is an even number greater than 3 and M is reflexive. Then
HomR(M,M) is (S3) if and only if M is free.

(4) In this part we do not assume isolated singularity. Assume R is a local
hypersurface of dimension at least 3. Suppose that M is reflexive and locally
free on the punctured spectrum of R. Assume that [M ] = 0 or [M∗] = 0 in
G(R)Q. Then HomR(M,M) is (S3) if and only if M is free.

Proof. Part (1) and (2) are contained in Theorem 4.1 in [7]). Part (3) is Corollary
4.4 in [8]. Part (4) is Theorem 3.4 in [8]. �

Next we shall discuss how to construct projective resolution over an endomor-
phism ring. It was explained to us by Craig Huneke. The idea follows [3], as
explained in [14], however we need a bit more details for our purpose. For finite
R-modules M,N we shall write N |M if N is a direct summand of M .

Construction 2.8. Let M be a finite R-module and A = HomR(M,M). It is well
known that there is an equivalence between the categories of modules in add(M)
and projective modules over A via HomR(M,−) (see for example Lemma 4.12 in
[4] or [14]). It follows that any finite A-module N fits into an exact sequence

0→ HomR(M,N1)→ HomR(M,P1)→ HomR(M,P0)→ N → 0

The above discussion show that when investigating projective resolutions of A-
modules if suffices to consider modules of the form HomR(M,N). If R|M , one
could build a resolution in a particularly nice way. First pick a minimal set of
generators f1, · · · , fn of HomR(M,N) which includes a minimal set of generators
of HomR(R,N). Let φ be the map Mn → N which takes (m1, · · · ,mn) to f1(m1)+
· · · + fn(mn). Clearly φ is surjective and HomR(M,φ) : A⊕n → HomR(M,N) is
also surjective. In other words, one has the short exact sequences:

0→ N1 →M⊕n → N → 0

and
0→ HomR(M,N1)→ A⊕n → HomR(M,N)→ 0

Continuing in this fashion one can build an exact complex:

F : · · · →Mni+1 →Mni → · · · →Mn0 → N → 0

such that HomR(M,F) is an A- projective resolution of HomR(M,N).

Corollary 2.9.

gl.dim(A) ≤ sup{pdA HomR(M,N)|N ∈ mod(R)}+ 2

Proof. As in 2.8, any A-module has a second syzygy of the form HomR(M,N). �

Corollary 2.10. Let R be a local ring and M be an R-module such that R|M and
gl.dim HomR(M,M) is finite. Then add(M) generate the Grothendieck group of
mod (R).



REMARKS ON NON-COMMUTATIVE CREPANT RESOLUTIONS OF COMPLETE INTERSECTIONS5

Remark 2.11. The above construction shows, as proved by Leuschke (Theorem
6, [14]), that if the ring R has finite CM type, and one takes M to be the direct
sum of all the representatives of the indecomposable MCM modules, then A =
HomR(M,M) will have finite global dimension. Thus, if A is MCM itself, it will
be an NCCR over R. In dimension 2, A would be automatically MCM, so this
process works very well. However, in dimension 3 or higher, A is rarely MCM,
and indeed 2.5 indicates that we have to pick the non-Tor-rigid modules among the
indecomposable MCMs. We will push this idea further in the next section.

Finally, we discuss some sufficient conditions for an endomorphism ring to have
finite global dimension. Our key condition is similar to the concept of cluster tilting
(see, for example, [5]).

Proposition 2.12. Let R be a local Cohen-Macaulay ring of dimension d and M
a MCM R-module which is locally free in codimension 2 and assume that R|M . Let
X (M) = {N ∈ MCMR|Ext1R(M,N) = 0}. If M ∈ X (M) and X (M) ⊆ pen(M)
for some n then A = HomR(M,M) has finite global dimension at most n+ d+ 2.

Proof. First, we shall prove via induction on n that for any module C ∈ pen(M),
pdA HomR(M,C) ≤ n. The case n = 0 is obvious. Suppose we proved our claim for
n = l. Pick C ∈ pel+1(M) and we may assume C fits into one of the two sequences:

0→ A→ C → B → 0

0→ A→ B → C → 0
with A ∈ add(M) and B ∈ pel(M). But by assumption Ext1R(M,A) = 0, so either
sequence remains exact after applying Hom(M,−). By induction hypotheses we
are done.

It suffices to prove that for any R-module N , HomR(M,N) has finite projective
dimension at most n + d over A, see Remark 2.9. By Lemma 2.3 we know that A
is (S3). From Construction 2.8 one can build an exact sequence:

F : 0→ Nd →Mnd−1 → · · · →Mn0 → N → 0
which remains exact when applying HomR(M,−). It follows that Nd is MCM and
HomR(M,Nd) is (S3). Lemma 2.3 tells us that Ext1R(M,Nd) = 0, so Nd ∈ X . By
the claim, pdA HomR(M,Nd) ≤ n, so we are done.

�

Remark 2.13. If R is Gorenstein and A is MCM, then we only need to assume
X ⊆ pe∞(M) to conclude that the global dimension of A is exactly d, by [18], proof
of Lemma 4.2.

3. NCCR over hypersurfaces

In the case of hypersurfaces, one can say a lot more about NCCRs due to recent
results on Tor-rigidity. Throughout this section we assume that R is an abstract
hypersurface, i.e. that R̂ ∼= S/(f) where S is a regular local ring and f ∈ S is a
regular element.

Theorem 3.1. Let R be a local hypersurface satisfying condition (R2). Assume
that R̂ ∼= S/(f) where S is an equicharacteristic or unramified regular local ring
and f ∈ S is a regular element.
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(1) If dimR = 3 and the class group of R is finite (i.e., R is Q-factorial), then
R admits no NCCR.

(2) If R has isolated singularity and dimR is an even number greater than 3,
then R admits no NCCR.

(3) Let N be the set of isomorphism classes of indecomposable maximal Cohen-
Macaulay (MCM) modules over R which are not Tor-rigid. Assume that N
is not empty. Let M a module such that R|M and N ⊂ pen(M) for some
n. If A = HomR(M,M) is (S3), then it has finite global dimension at most
dimR+ n. In particular, if A is MCM, then it is a NCCR over R.

Proof. Part (1) and (2) follow from Theorems 2.4 and 2.7. It is left to prove part
(3). We may assume d = dimR ≥ 3. By Lemma 2.3 and Proposition 2.12, we just
need to show that any non-free, indecomposable module in X (M) also belongs to
N . Pick such K in X (M). We have Ext1R(M,K) = 0 and HomR(M,K) is (S3).
By Theorem 2.4, M∗ ⊗R K is (S3). But one can embed M∗ into a free module:
0→M∗ → G→ L→ 0 such that L is torsion. Tensoring with K and using the fact
that M∗⊗R K is (S3) forces TorR

1 (L,K) = 0. As K is Tor-rigid, TorR
i (M∗,K) = 0

for all i > 0. Since R is a hypersurface and M is not free, it now follows that K is
free (see [10]), a contradiction.

�

Remark 3.2. In the situation of part (1), being Q-factorial and factorial are ac-
tually the same for R. This is known for the equicharacteristic case. We will prove
the unramified case in a forthcoming paper.

Remark 3.3. The conclusion of part (1), if we further assume that R has terminal
singularity and the ground field is the complex numbers, can be explained using Van
den Bergh results and standard facts of birational geometry. Namely, by Theorem
6.6.3 of [18], R has a projective crepant resolution Y → Spec(R), which has to be a
small resolution (i.e. the fibre of the closed point has dimension at most 1). Then
the pushforward of the hyperplane section on Y can not be Q-Cartier, so the class
group of R can not be torsion. We thank Tomasso de Fernex for explaining this
fact to us.

Remark 3.4. Part (2) can be proved directly using Theorem 2.4 if one knows that
over such hypersurface, any module is Tor-rigid. We conjecture this to be true
in [7]. Recently, a proof of our conjecture in the graded, equicharacteristic 0 case
using complex-analytic method by Walker, Moore, Piepmeyer and Spiroff has been
announced, see [17].

Example 3.5. There are examples of isolated hypersurface singularities in all di-
mensions which admits projective crepant resolutions: let k be an algebraically
closed field of characteristic 0 and R = k[[x0, x1, · · · , xn]]/(f) with f = (xl

0 + xn
1 +

· · · + xn
n) and l > n an integer such that l ≡ 1 mod n (see [16], Theorem A.4).

Thus, our result shows that extra conditions will be needed for the equivalence of
the existence of two definitions of crepant resolutions, in higher dimensions.

Example 3.6. Let k be an algebraically closed field of characteristic 0. We now
apply Theorem 3.1 to analyze some simple singularities of dimension 3 over k. They
are well-known to be hypersurfaces of type An, Dn, E6, E7 or E8. But the types
A2l, E6, E8 are factorial (in fact G(R)Q = 0), so they admit no NCCR. We now
study the case A2l+1 = k[[x, y, u, v]]/(xy + u2 − v2l+2). There are exactly l + 3
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indecomposable MCM modules up to isomorphism: R, I = (x, u + vl), I∗ and l
modules M1, · · · ,Ml of ranks 2.

We claim that all the modules Mi are Tor-rigid. By Theorem 2.7, it is enough
to show that each [Mi] is 0 in G(R)Q. By Knörrer periodicity result (see [13]
and [21], Chapter 12), one could prove that fact by looking at dimension 1, that
is R = k[[u, v]]/(u2 − v2l+2). In this case, Mi is the first syzygy of the ideal
Li = (u, vi). As R/Li has finite length, [R/Li] = 0 in G(R)Q, and so is the class of
its second syzygy Mi. Remark 2.6 now shows that I and I∗ are the only non-free
indecomposable MCM modules which are not Tor-rigid. But I is the first syzygy
of I∗, so I∗ ∈ pe1(M), where M = R⊕ I. Since A = HomR(M,M) = R2 ⊕ I ⊕ I∗
is MCM, it gives a NCCR by part (3) of Theorem 3.1. Obviously one can also take
M = R⊕ I∗.

One could also prove that A is NCCR as follows. Every Mi fits into an exact
sequence 0 → I → Mi → I∗ → 0 (it can be shown by computing the length of
Ext1R(I∗, I)). Since I is the first syzygy of I∗, it follows that every MCM module
is in pe2(M). Then we again apply part (3) of Theorem 3.1.

Remark 3.7. The NCCRs over simple singularities have been completely analyzed
in [5] via different techniques. We will use the methods described here to study
rigid and cluster tilting objects, in the sense of loc. cit., in a separate paper.

4. Obstructions to non-commutative crepant resolutions over
complete intersections

In this section we shall extend some results of the last section to the case of com-
plete intersections, that is, rings whose completion are isomorphic to S/(f1, · · · , fn)
with S a regular local ring and the (f1, · · · , fn) from a regular sequence in S. Typ-
ically we would need to assume some mildly good depth conditions on the module
M which gives rise to a NCCR. That is because Tor-rigidity has not been very
well-understood in this generality.

The following observation partly generalizes Grothendieck well-known theorem
that the classs group of a complete intersection which is (R3) is trivial. It also
places some serious restrictions on NCCRs of complete intersections whose singular
locus have codimension at least 4.

Proposition 4.1. Let R be an excellent local complete intersection satisfying reg-
ularity condition (R3). Suppose that M satisfies (S3). Then Hom(M,M) is (S4) if
and only if M is free.

Proof. Since R is excellent we can complete without affecting the issues. So we may
assume R is S modulo a regular sequence, where S is a complete regular local ring.
By Lemma 2.3 Ext1R(M,M) = Ext2R(M,M) = 0. The desired result follows from
Proposition 2.5 of [12]. We give a quick explanation for completeness. Since R is
now complete, we can lift M to a module N over S (see [1]). Since over a regular
local ring every module is Tor-rigid ([15]), we know that so is M as R-module.
Theorem 2.4 finishes the proof. �

Corollary 4.2. Let R be an excellent local complete intersection satisfying condi-
tion (R3). Suppose that M is a reflexive R-module such that A = HomR(M,M) is
a NCCR. Then M can not satisfy (S3).
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Remark 4.3. In all known examples of NCCR, the module M is actually MCM.
The above Corollary shows that this can not happen when R is an excellent local
complete intersection satisfying condition (R3).

Inspired by the above result, we shall study the issue of deforming NCCR. We
first prove a few lemmas, which should be known, but we can not find a convenient
reference:

Lemma 4.4. Let (S,m) be a excellent local ring and M a finite S-module satisfying
(Sn). Then the local cohomology module Hn

m(N) has finite length.

Proof. We may complete and assume that S is the homomorphic image of a regular
local ring (T,m). Let d = dimT . Local duality over T says that Hn

m(M) = Hn
m(M)

has finite length if and only if Extd−n
T (M,T ) has finite length. Localize at any non-

maximal q ∈ Spec(T ) ∩ Supp(M). The module Extd−n
T (M,T )q

∼= Extd−n
Tq

(Mq, Tq)

is dual to Hdim Tq−d+n
qTq

(Mq) which is 0 since M is (Sn). �

Lemma 4.5. Let (S,m) be an excellent local ring and N be a S-module. Suppose
f ∈ m is a regular element on S and N . Let R = S/(f) and M = N/(f). Let n be
an integer.

(1) If M is free in codimension n, then so is N .
(2) If M satisfies (Sn), then so does N .
(3) If K is an S-module such that f is K-regular and Ext1R(M,K/(f)) = 0

then Ext1S(N,K) = 0 and HomR(M,K/(f)) ∼= HomS(N,K)/(f).

Proof. Let p ∈ Spec(S) of codimension n. If f ∈ p, then Mp is free, and (1) follows
by Nakayama’s Lemma. If f /∈ p, one can choose a minimal prime q of (f, p). Then
q has codimension n in R, so Mq and thus Nq is free. Since p ⊂ q, Np is free as
well.

For (2), let V (f) = {p ∈ Spec(S)|f ∈ p} and U = {p ∈ Spec(S)|depthRp
Mp ≥

min{n, dim(Rp)}}. It is standard that U is open in Spec(S) (for example, see [9],
3.3.9). Since S is local, it is enough to show that V (f) ⊂ U . We now proceed by
induction on n. Suppose n = 1, we first prove that depthN ≥ 1. The long exact
sequence of local cohomology coming from

0→ N
f−→ N →M → 0

and Nakayama shows that H0
m(N) = 0. Our argument localizes, so V (f) ⊂ U ,

as desired. Suppose we already know that N is (Sn−1) and M is (Sn). Again, it
suffices to prove depthN ≥ n. By Lemma 4.4 we know that Hn−1

m (N) has finite
length. But using the fact that depthM ≥ n and the long exact sequence of local
cohomology one gets:

· · · → Hn−1
m (N)

f−→ Hn−1
m (N)→ 0

which forces Hn
m(N) = 0, which gives what we want.

We now prove (3). Apply HomS(N,−) to the short exact sequence

0→ K
f−→ K → K/(f)→ 0

we get:

0→ HomS(N,K)
f−→ HomS(N,K)→ HomS(N,K/(f))→ Ext1S(N,K)

f−→ Ext1S(N,K)→ 0

Nakayama’s Lemma provides the desired conclusions. �
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Theorem 4.6. Let S be an excellent local ring and N be a S-module. Suppose f
is a regular element on S and N . Let R = S/(f) and M = N/(f). Assume M is
(S3) and free in codimension 2 as an R-module. If A = HomR(M,M) is (S3) and
has finite global dimension, then so is B = HomS(N,N).

Proof. We first note that Ext1R(M,M) = 0 by 2.3. Now Lemma 4.5 shows that
B is (S3). As in the proof of 3.1 it is enough to prove that pdB HomS(N,K)
is finite for any MCM S-module K such that HomS(N,K) is (S3). But then
Ext1S(N,K) = 0 and HomS(N,K/(f)) ∼= HomR(M,K/(f)) ∼= HomS(N,K)/(f).
Now it is enough, by Nakayama, to show that pdB HomS(N,K/(f)) is finite. But
by assumption HomS(N,K/(f)) has a finite resolution by projective A-modules.
Since each projective A-module has finite projective dimension over B (in fact
pdB A = 1), we are done. �

Corollary 4.7. Let S be an complete local ring and f is a regular element on S.
Let R = S/(f). Suppose that R admits a NCCR A = HomR(M,M) such that M
is (S4) and free in codimension 3. Then there is a lifting N of M to S such that
B = HomS(N,N) is a NCCR over S.

Remark 4.8. The above Corollary gives another proof of 4.2.

Finally, we mention that one could use the ideas in this paper to explain failure
of certain non-commutative resolutions to be crepant in the positive characteristic
case. Let R be a local ring of characteristic p. Let eR denotes R as a module over
itself via the e-th power of the Frobenius homomorphism. Recently, the module
A = HomR(eR,eR) has been shown to have finite global dimension (so it is a
non-commutative resolution) in some cases ([20]). It is known that over complete
intersections, eR is Tor-rigid (see [2]). Hence the following result is straightforward
application of Corollary 2.5 (compare with Section 6 in [20]):

Corollary 4.9. Let R be a local complete intersection of characteristic p such that
R is (R2) and e any integer. Then A = HomR(eR,eR) is not a NCCR (it will not
be “crepant”).
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