Problems for the First KS math competition

March 29, 2007

• Problem 1
Let \(f \) be a continuous function on \([0, 1]\), such that for every \(x \in [0, 1] \), \(\int_{x}^{1} f(t) dt \geq \frac{1-x^2}{2} \). Show that

\[
\int_{0}^{1} f^2(x) dx \geq \frac{1}{3}.
\]

Solution:

\[
0 \leq \int_{0}^{1} (f(x) - x)^2 dx = \int_{0}^{1} f^2(x) dx - 2 \int_{0}^{1} xf(x) dx + \int_{0}^{1} x^2 dx.
\]

It follows

\[
\int_{0}^{1} f^2(x) dx \geq 2 \int_{0}^{1} xf(x) dx - \frac{1}{3}.
\]

But

\[
\frac{1}{3} = \int_{0}^{1} \frac{1-x^2}{2} dx \leq \int_{0}^{1} (\int_{0}^{x} f(t) dt) dx = \int_{0}^{1} x f(t) dt,
\]

whence

\[
\int_{0}^{1} f^2(x) dx \geq \frac{1}{3}.
\]
Problem 2 Let \(x_{n+1} = \frac{4}{2 - x_n} \), where \(x_0 = 1 \). Determine \(\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} x_k \).

Solution The sequence is periodic with period 3: \(x_0 = 1, x_1 = 4, x_2 = -2 \) and \(x_3 = 1 \). It follows that \(S_n = \sum_{k=1}^{n} x_k \) is

\[
S_n = \begin{cases}
3m & n = 3m \\
3m + 4 & n = 3m + 1 \\
3m + 2 & n = 3m + 2
\end{cases}
\]

It is clear that \(1 \leq S_n/n \leq (n + 3)/n \) and the \(\lim_{n \to \infty} S_n/n = 1 \).

Problem 3 Let \(P \) be a polynomial of degree \(n \) with real coefficients and real zeros only. Show that

\[
(n - 1)(P'(x))^2 \geq nP(x)P''(x).
\]

When do you achieve equality for all \(x \)? **Solution:** Since \(P(x) = a(x-x_1) \ldots (x-x_n) \), we have

\[
\frac{P'(x)}{P(x)} = \sum_{j=1}^{n} \frac{1}{x-x_j} \\
\frac{P''(x)}{P(x)} = \sum_{1 \leq i < j \leq n} \frac{2}{(x-x_j)(x-x_i)}
\]

Thus

\[
(n - 1) \left(\frac{P'(x)}{P(x)} \right)^2 - n \frac{P''(x)}{P(x)} = \sum_{j=1}^{n} \frac{(n - 1)}{(x-x_j)^2} - \sum_{1 \leq i < j \leq n} \frac{2}{(x-x_j)(x-x_i)} = \\
= \sum_{1 \leq i < j \leq n} \left(\frac{1}{x-x_i} - \frac{1}{x-x_j} \right)^2 \geq 0.
\]
• Problem 4
Find all differentiable functions \(F : \mathbb{R}^+ \to \mathbb{R}^+ \), so that
\[
f(x)f(yf(x)) = f(x + y).
\]

Solution:
Write the condition as
\[
f^2(x) \frac{f(yf(x)) - 1}{yf(x)} = \frac{f(x + y) - f(x)}{y}
\]
Take a limit as \(y \to 0 \) to get \(f'(x) = -f'(0)f^2(x) \), which gives the solution \(f(x) = \frac{1}{(ax + b)} \). Plug this in the original equation to find that only when \(b = 1 \), this will be satisfied.

• Problem 5
Let \(A \) and \(B \) are two \(n \times n \) symmetric matrices with real entries, which do not necessarily commute. Assume also that \(A \) is positive in the sense that all eigenvalues are positive. Show that \(AB \) has all eigenvalues real.

Solution: Since \(A \) is symmetric and positive, then \(A = T^{-1}KT \), where \(K \) is diagonal with positive entries \(\lambda_1, \ldots, \lambda_n \) on the diagonal and \(T \) is invertible matrix. Define \(K_{1/2} \), to be the diagonal matrix with \(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n} \) on the diagonal and \(C = T^{-1}K_{1/2}T \) is invertible. Clearly \(K_{1/2}^2 = K \) and \(C^2 = A \). We have
\[
C^{-1}ABC = C^{-1}C^2BC = CBC.
\]
It is clear that \(CBC \) is symmetric with real entries \((CBC)^t = C^tB^tC^t = CBC \) and therefore has only real eigenvalues. But \(AB \) is similar to \(CBC \) and therefore has the same real eigenvalues.
Problem 6
Let A be a real 4×2 matrix, while B is real 2×4 matrix. We know
\[
AB = \begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{pmatrix}
\]
Find BA.
Solution:
Represent $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$ and $B = (B_1, B_2)$, where A_1, A_2, B_1, B_2 are 2×2 matrices. We have
\[
\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{pmatrix} = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} (B_1, B_2) = \begin{pmatrix} A_1 B_1 & A_1 B_2 \\ A_2 B_1 & A_2 B_2 \end{pmatrix}.
\]
It follows that $A_1 B_1 = A_2 B_2 = I$ and $A_1 B_2 = A_2 B_1 = -I$. Then
\[
BA = (B_1, B_2) \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} = B_1 A_1 + B_2 A_2 = 2I = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}.
\]

Problem 7
Let p_1, \ldots, p_n be finitely many points in the unit ball. Show that there exists at least one point on the unit circle p, so that
\[
\frac{1}{n} \sum_{k=1}^{n} |p - p_i| \geq 1.
\]
Solution: Choose p to be the unit vector in the direction opposite to $p_1 + \ldots + p_n$. We have by the triangle inequality
\[
\sum_{j=1}^{n} |p - p_j| \geq |np - \sum_{j=1}^{n} p_j| = n + \sum_{j=1}^{n} p_j | \geq n.
\]
• Problem 8

Let $z \neq 0$ and A and B are two matrices, with

$$AB - BA = zA$$

Show that for all integers k, $A^kB - BA^k = zkA^k$. Show that there exists k, so that $A^k = 0$.

Solution: We have

$$A^kB - BA^k = \sum_{j=1}^{k} (A^{k-j+1}BA^{j-1} - A^{k-j}BA^j) =$$

$$= \sum_{j=1}^{k} A^{k-j}(AB - BA)A^{j-1} = \sum_{j=1}^{k} A^{k-j}zAA^{j-1} = zkA^k.$$

For the second part, it is equivalent to show that A has only zero eigenvalues. Suppose not. Assume without loss of generality (by rescaling) that A has eigenvalues, satisfying $|\lambda| \leq 1$ and an eigenvalue $\lambda_0 : |\lambda_0| = 1$. It is clear now that the entries of A^k are uniformly bounded in k, whence the entries of $A^kB - BA^k$ are uniformly bounded in k. The right-hand zkA^k has entries that increase linearly with k and that is a contradiction.