Complete Graphs

Let \(N \) be a positive integer.

Definition: A complete graph is a graph with \(N \) vertices and an edge between every two vertices.

- There are no loops.
- Every two vertices share exactly one edge.

We use the symbol \(K_N \) for a complete graph with \(N \) vertices.
Complete Graphs

K_1

K_2

K_3

K_4

K_5

K_6
How many edges does K_N have?
Complete Graphs

How many edges does K_N have?

- K_N has N vertices.
How many edges does K_N have?

- K_N has N vertices.
- Each vertex has degree $N - 1$.

The number of edges in K_N is $N(N - 1)/2$.

Now, the Handshaking Theorem tells us that...
Complete Graphs

How many edges does K_N have?

- K_N has N vertices.
- Each vertex has degree $N - 1$.
- The sum of all degrees is $N(N - 1)$.

Now, the Handshaking Theorem tells us that the number of edges in K_N is $\frac{N(N - 1)}{2}$.
How many edges does K_N have?

- K_N has N vertices.
- Each vertex has degree $N - 1$.
- The sum of all degrees is $N(N - 1)$.
- Now, the Handshaking Theorem tells us that...
Complete Graphs

How many edges does K_N have?

- K_N has N vertices.
- Each vertex has degree $N - 1$.
- The sum of all degrees is $N(N - 1)$.
- Now, the Handshaking Theorem tells us that...

The number of edges in K_N is $\frac{N(N - 1)}{2}$.

The number of edges in K_n is $\frac{n(n-1)}{2}$.

This formula also counts the number of pairwise comparisons between N candidates (recall §1.5).
The number of edges in K_N is $\frac{N(N - 1)}{2}$.

- This formula also counts the number of pairwise comparisons between N candidates (recall §1.5).
- The Method of Pairwise Comparisons can be modeled by a complete graph.
The number of edges in K_N is $\frac{N(N - 1)}{2}$.

- This formula also counts the number of pairwise comparisons between N candidates (recall §1.5).
- The Method of Pairwise Comparisons can be modeled by a complete graph.
 - Vertices represent candidates
 - Edges represent pairwise comparisons.
 - Each candidate is compared to each other candidate.
 - No candidate is compared to him/herself.
How many different Hamilton circuits does K_N have?

- Let’s assume $N = 3$.

How many different Hamilton circuits does K_N have?

- Let’s assume $N = 3$.

- We can represent a Hamilton circuit by listing all vertices of the graph in order.

- The first and last vertices in the list must be the same. All other vertices appear exactly once.

- We’ll call a list like this an “itinerary”.
Hamilton Circuits in K_N

How many different Hamilton circuits does K_N have?

Some possible itineraries:

- A, C, D, B, A
- Y, X, W, U, V, Z, Y
- Q, W, E, R, T, Y, Q

- The first/last vertex is called the “reference vertex”.

Hamilton Circuits in K_N

How many different Hamilton circuits does K_N have?

Some possible itineraries:

- A, C, D, B, A
- Y, X, W, U, V, Z, Y
- Q, W, E, R, T, Y, Q

- The first/last vertex is called the “reference vertex”.

- **Changing the reference vertex does not change the Hamilton circuit**, because the same edges are traveled in the same directions.

- That is, different itineraries can correspond to the same Hamilton circuit.
Changing the reference vertex does not change the Hamilton circuit.

For example, these itineraries all represent the same Hamilton circuit in K_4:

- A, C, D, B, A (reference vertex: A)
- B, A, C, D, B (reference vertex: B)
- D, B, A, C, D (reference vertex: C)
- C, D, B, A, C (reference vertex: D)
Changing the reference vertex does not change the Hamilton circuit.

For example, these itineraries all represent the same Hamilton circuit in K_4:

- A, C, D, B, A (reference vertex: A)
- B, A, C, D, B (reference vertex: B)
- D, B, A, C, D (reference vertex: C)
- C, D, B, A, C (reference vertex: D)

Every Hamilton circuit in K_N can be described by exactly N different itineraries (since there are N possible reference vertices).
So, how many possible itineraries are there?
So, how many possible itineraries are there?

- N possibilities for the reference vertex
So, how many possible itineraries are there?

- N possibilities for the reference vertex
- $N - 1$ possibilities for the next vertex
So, how many possible itineraries are there?

- N possibilities for the reference vertex
- $N - 1$ possibilities for the next vertex
- $N - 2$ possibilities for the vertex after that
So, how many possible itineraries are there?

- N possibilities for the reference vertex
- $N - 1$ possibilities for the next vertex
- $N - 2$ possibilities for the vertex after that
- ...
So, how many possible itineraries are there?

- N possibilities for the reference vertex
- $N - 1$ possibilities for the next vertex
- $N - 2$ possibilities for the vertex after that
- . . .
- 2 possibilities for the $(N - 1)st$ vertex
So, how many possible itineraries are there?

- N possibilities for the reference vertex
- $N - 1$ possibilities for the next vertex
- $N - 2$ possibilities for the vertex after that
- ...
- 2 possibilities for the $(N - 1)$st vertex
- 1 possibility for the Nth vertex
So, how many possible itineraries are there?

- N possibilities for the reference vertex
- $N - 1$ possibilities for the next vertex
- $N - 2$ possibilities for the vertex after that
- . . .
- 2 possibilities for the $(N - 1)$st vertex
- 1 possibility for the Nth vertex
- and then the reference vertex again.
So, how many possible itineraries are there?

- N possibilities for the reference vertex
- $N - 1$ possibilities for the next vertex
- $N - 2$ possibilities for the vertex after that
- \ldots
- 2 possibilities for the $(N - 1)$st vertex
- 1 possibility for the Nth vertex
- and then the reference vertex again.

If we are counting Hamilton circuits, then we don’t care about the reference vertex.
Conclusion: The number of Hamilton circuits in K_N is

$$(N - 1) \times (N - 2) \times \cdots \times 3 \times 2 \times 1 = (N - 1)!$$

Each one can be described by N different itineraries.

(So the number of itineraries is actually $N!$.)
For every $N \geq 3$,

\[
\text{The number of Hamilton circuits in } K_N \text{ is } (N - 1)!.
\]

In comparison, for every $N \geq 1$,

\[
\text{The number of edges in } K_N \text{ is } \frac{N(N - 1)}{2}.
\]
Hamilton Circuits in K_N

<table>
<thead>
<tr>
<th>Vertices</th>
<th>Edges $N(N-1)/2$</th>
<th>Hamilton circuits $(N-1)!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>120</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>620</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>16</td>
<td>120</td>
<td>1307674368000</td>
</tr>
</tbody>
</table>
Hamilton Circuits in K_3

Itineraries in K_3:

<table>
<thead>
<tr>
<th>A, B, C, A</th>
<th>A, C, B, A</th>
</tr>
</thead>
<tbody>
<tr>
<td>B, C, A, B</td>
<td>B, A, C, B</td>
</tr>
<tr>
<td>C, A, B, C</td>
<td>C, B, A, C</td>
</tr>
</tbody>
</table>
Hamilton Circuits in K_3

Itineraries in K_3:

A, B, C, A	A, C, B, A
B, C, A, B	B, A, C, B
C, A, B, C	C, B, A, C

- Each column of the table gives 3 itineraries for the same Hamilton circuit (with different reference vertices).
- The number of Hamilton circuits is $(3 - 1)! = 2! = 2$.
Hamilton Circuits in K_4

Itineraries in K_4:

<table>
<thead>
<tr>
<th>ABCDA</th>
<th>ABDCA</th>
<th>ACBDA</th>
<th>ACDBA</th>
<th>ADBCA</th>
<th>ADCBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCDAB</td>
<td>BDCAB</td>
<td>BDACB</td>
<td>BACDB</td>
<td>BCADB</td>
<td>BADCB</td>
</tr>
<tr>
<td>CDABC</td>
<td>CABDC</td>
<td>CBDAC</td>
<td>CDBAC</td>
<td>CADBC</td>
<td>CBADC</td>
</tr>
<tr>
<td>DABCD</td>
<td>DCABD</td>
<td>DACBD</td>
<td>DBACD</td>
<td>DBCAD</td>
<td>DCBAD</td>
</tr>
</tbody>
</table>

- Each column lists 4 itineraries for the same Hamilton circuit.
- The number of Hamilton circuits is $(4 - 1)! = 3! = 6$.
Where have you seen this table before?
Hamilton Circuits in K_4

Where have you seen this table before?

<table>
<thead>
<tr>
<th>ABCD</th>
<th>ABDC</th>
<th>ACBD</th>
<th>ACDB</th>
<th>ADBC</th>
<th>ADCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCDA</td>
<td>BDCA</td>
<td>BDAC</td>
<td>BACD</td>
<td>BCAD</td>
<td>BADC</td>
</tr>
<tr>
<td>CDAB</td>
<td>CABD</td>
<td>CBDA</td>
<td>CDBA</td>
<td>CADB</td>
<td>CBAD</td>
</tr>
<tr>
<td>DABC</td>
<td>DCAB</td>
<td>DACB</td>
<td>DBAC</td>
<td>DBCA</td>
<td>DCBA</td>
</tr>
</tbody>
</table>
Hamilton Circuits in K_4

Where have you seen this table before?

<table>
<thead>
<tr>
<th>ABCD</th>
<th>ABDC</th>
<th>ACBD</th>
<th>ACDB</th>
<th>ADBC</th>
<th>ADCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCDA</td>
<td>BDCA</td>
<td>BDAC</td>
<td>BACD</td>
<td>BCAD</td>
<td>BADC</td>
</tr>
<tr>
<td>CDAB</td>
<td>CABD</td>
<td>CBDA</td>
<td>CDBA</td>
<td>CADB</td>
<td>CBAD</td>
</tr>
<tr>
<td>DABC</td>
<td>DCAB</td>
<td>DACB</td>
<td>DBAC</td>
<td>DBCA</td>
<td>DCBA</td>
</tr>
</tbody>
</table>

An itinerary (without the last vertex repeated) is the same thing as the list of sequential coalitions in a weighted voting system!

That’s why there are $N!$ itineraries on N vertices.
By the way, for which values of N does the complete graph K_N have an Euler circuit?
By the way, for which values of N does the complete graph K_N have an Euler circuit?

Answer: When N is odd. (Every vertex in K_N has degree $N - 1$, so we need $N - 1$ to be even.)