1. Weighted Enumeration of Spanning Trees of Q_n

Again, spanning trees of Q_n were studied by Vic Reiner and myself in the paper [1], which is available from my MC’04 page. In these notes, I’ll restate our results somewhat more informally.

Recall that one can use the Matrix-Tree Theorem to prove that

\[
\tau(Q_n) = \prod_{S \subseteq [n], |S| \geq 2} 2|S| = \prod_{k=2}^{n}(2k)^{\binom{n}{k}}
\]

(see [2]). Assign each spanning tree T the weight monomial

\[
\text{wt}(T) = \prod_{e \in T} q_{\text{dir}(e)}
\]

where $\text{dir}(e) \in [n]$ is the direction of edge e—that is, the unique bit in which the endpoints of e differ. With the Souped-Up Matrix-Tree Theorem, one can prove that

\[
\sum_{T \in T(Q_n)} \text{wt}(T) = q_1 \ldots q_n \prod_{S \subseteq [n], |S| \geq 2} \left(2 \sum_{i \in S} q_i\right) = \sum_{T \in T(Q_n)} \text{wt}(T) = 2^{2^n-n-1} q_1 \ldots q_n \prod_{S \subseteq [n], |S| \geq 2} \left(\sum_{i \in S} q_i\right),
\]

a stronger result than (1) (since one can recover (1) from (3) by setting all the q_i’s to 1).

Actually, we can do even better. Remember that the Prüfer code allows us to enumerate spanning trees of the complete graph K_n and keep track of the valence of each vertex. We can’t quite do that for Q_n. I mean, we can certainly try and study the polynomial

\[
\sum_{T \in T(Q_n)} \prod_{v \in V(Q_n)} x_{v}^{\text{val}(T)}
\]

but this is not at all a nice expression. Yes, you can certainly factor out one copy of each variable, but what is left is an unsightly mess even for $n = 3$.

However, we can keep track of the following data. Let $e \in E(Q_n)$ be an edge in direction i, with endpoints

\[
(v_1, v_2, \ldots, v_i, \ldots, v_n), \quad (v_1, v_2, \ldots, \overline{v}_i, \ldots, v_n).
\]

(The bar, of course, means binary complement.) We want to keep track of which of the constant bits (that is, the v_j’s for $j \neq i$) are 1’s and which are 0’s. So associate to e the following Laurent monomial in the variable set $\Psi = \{q_1, \ldots, q_n, x_1, \ldots, x_n\}$:

\[
\text{wt}(e) = q_i \prod_{j \neq i} x_j^{2v_j - 1}.
\]

Notice that

\[
2v_j - 1 = \begin{cases}
1 & \text{if } v_j = 1, \\
-1 & \text{if } v_j = 0.
\end{cases}
\]

For example, here are the weights of all the edges in Q_3:
We now redefine the weight of a spanning tree $T \in \mathcal{T}(Q_n)$ as

$$\text{wt}(T) = \prod_{e \in T} \text{wt}(e),$$

which again is a Laurent monomial in the variables Ψ. Any theorem about these new weights can in principle be specialized to a statement about the old weights $\text{wt}(T)$ (see (2)) by setting all the x_i's to 1.

Now, using the Souped-Up Matrix-Tree Theorem and the edge weights given by (4), we can prove the following result (see [1, Theorem 3]; the notation is a little bit different but it's really the exact same formula):

$$\sum_{T \in \mathcal{T}(Q_n)} \text{wt}(T) = q_1 \cdots q_n \prod_{S \subseteq [n], |S| \geq 2} \sum_{i \in S} q_i \left(x_i^{-1} + x_i\right).$$

Note that setting all x_i's to 1 recovers (3), so this result really is more general. The proof of (6) involves linear algebra over arbitrary integral domains (such as the ring of Laurent polynomials in the variables Ψ); it’s not especially hard, but it’s sufficiently technical that I don’t want to talk about it here (see [1] or talk to Jeremy if you are really interested).

References
