Pseudodeterminants and perfect square spanning tree counts

Jeremy L. Martin (University of Kansas)
Molly Maxwell (Flathead Valley Community College)
Victor Reiner (University of Minnesota)
Scott O. Wilson (Queens College)

AMS Central Sectional Meeting
University of Wisconsin, Eau Claire
September 20, 2014

Cellular Trees

- X: pure cell complex (\(=\) CW complex) of dimension d
- ∂_k: cellular boundary map \(\partial_k : C_k(X) \to C_{k-1}(X)\)

Tree in X: $T = T_d \cup \text{Skel}_{d-1}(X)$ where $T_d = \text{column basis of} \ \partial_d$

- $H_d(T; \mathbb{Q}) = 0$
- $H_{d-1}(T; \mathbb{Q}) = H_{d-1}(X; \mathbb{Q})$

$\mathcal{T}_k(X) = \text{set of all} \ k\text{-trees in} \ X = \text{trees in} \ \text{Skel}_k(X)$

Examples:
- $\mathcal{T}_1(X) = \{\text{spanning forests of 1-skeleton graph}\}$
- $\mathcal{T}_0(X) = \{\text{individual vertices}\}$
- $\mathcal{T}_d(X \cong \mathbb{S}^d) = \{X - \sigma : \ \sigma \text{ a facet}\}$
Counting Cellular Trees

Assume $\tilde{H}_{k-1}(X; \mathbb{Q}) = 0$ (analogue of connectedness).

Tree count:

$$\tau_k(X) = \sum_{T \in \mathcal{T}_k(X)} |\tilde{H}_{k-1}(T; \mathbb{Z})|^2.$$

Weighted tree count: Assign each $\sigma \in X$ a monomial weight q_{σ}.

$$\tau_k(X; q) = \sum_{T \in \mathcal{T}_k(X)} |\tilde{H}_{k-1}(T; \mathbb{Z})|^2 \prod_{\sigma \in T} q_{\sigma}$$
Counting Cellular Trees

Cellular matrix-tree theorem: expresses $\tau_k(X), \tau_k(X;q)$ in terms of eigenvalues/cokernels of combinatorial Laplacians $\partial_k \partial_k^{tr}$.

- Bolker ’78: first studied simplicial spanning trees
- Kalai ’83: homology-squared weighting; skeletons of simplices
- Adin ’92: complete colorful complexes
- Duval–Klivans–JLM; Lyons; Catanzaro–Chernyak–Klein: general formulations

The cellular matrix-tree theorem can be restated in terms of **pseudodeterminants**.
Pseudodeterminants

The cellular matrix-tree theorem can be restated in terms of pseudodeterminants. What’s a pseudodeterminant?

Let $L \in \mathbb{Z}^{n \times n}$, not necessarily of full rank; eigenvalues $\lambda_1, \ldots, \lambda_n$.

Pseudodeterminant $\text{pdet}(L)$: last nonzero coefficient of characteristic polynomial $= \text{coefficient of } t^{n-\text{rank } L}$.

$$\text{pdet } L = \prod_{\lambda_i \neq 0} \lambda_i = \sum_{I \subseteq [n]: |I| = \text{rank } L} \det L_{I,I}$$

(So $\text{pdet } L = \det L$ if L is of full rank.)
Counting Trees with Pseudodeterminants

Cellular Matrix-Tree Theorem, Pseudodeterminant Version:
Let $L_{ud}^k = \partial_k \partial_k^{tr}$, the $(k-1)^{th}$ updown Laplacian of X. (This is a linear operator on $C_{k-1}(X)$.) Then

$$\text{pdet } L_{ud}^k = \tau_k(X)\tau_{k-1}(X).$$

Classical matrix-tree theorem: G graph, $L = L_{0}^{ud}(G)$.

$$\# \text{ spanning trees} = \frac{\text{product of nonzero eigenvalues of } L}{\text{number of vertices}}$$

$$\tau_1(G) = \text{pdet } L / \tau_0(G)$$
Pseudodeterminants and (Skew)-Symmetry

Proposition

Let $\partial \in \mathbb{Z}^{n \times n}$ be either symmetric or skew-symmetric. Then:

1. $\text{pdet}(\partial \partial^{\text{tr}}) = (\text{pdet} \partial)^2$.
2. All principal minors $\partial_{I,I}$ have the same sign, so

$$\text{pdet} \partial = \pm \sum_{I} |\text{coker} \partial_{I,I}| \quad \text{ (★)}$$

where I ranges over all row bases of ∂.

Question

What topological setup will give (★) combinatorial meaning?
Perfect Square Phenomena in Spanning Tree Counts

Tutte: G planar; $G \cong G^*$ from antipodal map on $S^2 \implies \tau(G) = (\text{number of self-dual spanning trees})^2$.

$\tau(W_3) = 16 = 4^2$

$\tau(W_5) = 121 = 11^2$

$\tau(W_7) = 841 = 29^2$

Question

Are there analogous perfect-square phenomena for higher-dimensional self-dual cell complexes?
Even-Dimensional Spheres: Maxwell’s Theorem

Theorem (Maxwell ’09)

Let \(k \) be odd. Let \(X \) be an antipodally self-dual cellular \(S^{2k} \) with at least one \(\mathbb{Z} \)-acyclic self-dual tree. Then

\[
\sum_{T \in \mathcal{T}_k(X)} |\tilde{H}_{k-1}(T; \mathbb{Z})|^2 = \left(\sum_{T \in \mathcal{T}_k(X), \text{T self-dual}} |\tilde{H}_{k-1}(T; \mathbb{Z})| \right)^2.
\]

What about odd-dimensional antipodally self-dual spheres?

- \(\dim = 2k \): involution on \(k \)-dimensional faces
- \(\dim = 2k + 1 \): pairing between \(k \) - and \((k + 1) \)-dim’l faces
Self-Dual Cell Complexes

Self-dual d-ball: regular cell complex $B \cong \mathbb{B}^d$, with an anti-automorphism α of its face poset:

$$\sigma \subseteq \tau \iff \alpha(\sigma) \supseteq \alpha(\tau).$$

Self-dual (d − 1)-sphere: $S = \partial B \cong S^{d-1}$.

Example: $B =$ simplex on vertex set V; $\alpha(\sigma) = V \setminus \sigma$

Example: Self-dual polytopes (polygons in \mathbb{R}^2; pyramids over polygons in \mathbb{R}^3; the 24-cell in \mathbb{R}^4; . . .)
Proposition

Let B be a self-dual cellular \mathbb{B}^d and $j + k = d - 1$. Then $\tau_j(B) = \tau_k(B)$.

Proof sketch.
For $T \in \mathcal{T}_j(B)$, consider the Alexander dual

$$T^\vee = \{\sigma \in B : \alpha(\sigma) \notin T\}.$$

Then

$$\mathcal{T}_j(B) = \{T^\vee : T \in \mathcal{T}_k(B)\}$$

and

$$H_{j-1}(T; \mathbb{Z}) \cong H_{k-1}(T^\vee; \mathbb{Z}).$$
Perfect Square Phenomenon for Even-Dimensional Balls

Let $B \cong \mathbb{B}^{2k}$ be self-dual and let $\partial = \partial_k(B)$. Then

$$\tau_{k-1}(B) = \tau_k(B)$$

and the pseudodeterminant version of the CMTT says that

$$\text{pdet} (\partial \partial^{tr}) = \tau_{k-1}(X) \tau_k(X) = \tau_k(X)^2.$$

Repeat Question: What additional structure will enable

$$\text{pdet} \partial = \pm \sum_{i} |\text{coker } \partial_{i,i}| \quad (\star)$$

to carry combinatorial meaning?
Definition: A self-dual cellular d-ball (B, α) is **antipodally self-dual** if α arises from the antipodal map on $\partial B \cong S^{d-1}$.

Technical details: explicit orientations, dual block complex, Poincaré duality...
Antipodal Self-Duality and Orientations

Proposition (Very Technical!)

Let B be an antipodally self-dual cellular $(2k)$-ball. Then B can be oriented so that the middle boundary matrix ∂_k satisfies

$$\partial^{tr} = (-1)^k \partial.$$

Example

If B is the simplex on vertices $[2k + 1]$, then start with the “textbook” orientation and reorient:

$$\sigma = \{v_0, \ldots, v_k\} \in B_k \mapsto (-1) \sum v_i \sigma.$$
Antipodally Self-Dual Even-Dimensional Balls

Proposition

Let $B \cong \mathbb{B}^{2k}$ be antipodally self-dual. Then B can be oriented so that the middle boundary matrix $\partial = \partial_k$ satisfies

$$\partial^{tr} = (-1)^k \partial.$$

Theorem

Let $B \cong \mathbb{B}^{2k}$ be antipodally self-dual and write $\tau_i = \tau_i(B)$. Then

$$\tau_k = \tau_{k-1} = \text{pdet} \partial \star \sum_I |\text{coker} \partial_{I,I}| = \sum_{T \in \mathcal{T}_k(S)} |H_k(T, T^\vee; \mathbb{Z})|.$$

(There is also a q-analogue.)
Open Questions

1. What about antipodally self-dual \mathbb{B}^d with $d \equiv 1 \pmod{4}$?
 - $d \equiv 3 \pmod{4}$: Maxwell
 - $d \equiv 0, 2 \pmod{4}$: this work

2. Any hope of bijective proofs?
 - E.g., higher-dimensional Prüfer code, Joyal bijection, …
Thanks for listening!
Appendix A: The Weighted CMTTPV

Weighted Cellular Matrix-Tree Theorem, Pdet Version

Ingredients:

- \(S \) \text{ cell complex of dimension } \geq k
- \(\partial = \partial_k \)
- \(x = (x_i) \) \text{ variables indexing } (k-1)\text{-cells}
- \(X = \text{diag}(x) \)
- \(y = (y_i) \) \text{ variables indexing } k\text{-cells}
- \(Y = \text{diag}(y) \)

Formula:

\[
p\det(X^{1/2} \cdot \partial \cdot Z \cdot \partial^{tr} \cdot Y^{1/2}) = \tau_k(S; y) \tau_{k-1}(S; z^{-1}).
\]

Setting \(y_i = z_i = 1 \) recovers the unweighted formula.
Appendix B: A Little Linear Algebra

∂: matrix of rank r
I, I': sets of r rows
J, J': sets of r columns

Useful Fact 1 ("The Minor Miracle")
I and J are a row basis and a column basis respectively if and only if $\det \partial_{I,J} \neq 0$.

Useful Fact 2

$$\det \partial_{I,J} \det \partial_{I',J'} = \det \partial_{I,J'} \det \partial_{I',J}.$$

Important consequences for matrices that are (skew-)symmetric!
Appendix C: Explicit Reorientation of Simplices

<table>
<thead>
<tr>
<th></th>
<th>123</th>
<th>124</th>
<th>125</th>
<th>134</th>
<th>135</th>
<th>145</th>
<th>234</th>
<th>235</th>
<th>245</th>
<th>345</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>23</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Appendix C: Explicit Reorientation of Simplices

$$\begin{pmatrix} 123 & 124 & 125 & 134 & 135 & 145 & 234 & 235 & 245 & 345 \\ 45 & 0 & 0 & 0 & 0 & 0 & - & 0 & 0 & + & - \\ 35 & 0 & 0 & 0 & 0 & + & 0 & 0 & - & 0 & + \\ 34 & 0 & 0 & 0 & - & 0 & 0 & + & 0 & 0 & - \\ 25 & 0 & 0 & - & 0 & 0 & 0 & 0 & + & - & 0 \\ 24 & 0 & + & 0 & 0 & 0 & 0 & + & 0 & + & 0 \\ 23 & - & 0 & 0 & 0 & 0 & 0 & + & - & 0 & 0 \\ 15 & 0 & 0 & + & 0 & - & + & 0 & 0 & 0 & 0 \\ 14 & 0 & - & 0 & + & 0 & - & 0 & 0 & 0 & 0 \\ 13 & + & 0 & 0 & - & + & 0 & 0 & 0 & 0 & 0 \\ 12 & - & + & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$