Enumerating cellular colorings, orientations, tensions and flows

Matthias Beck, Felix Breuer (San Francisco State University)
Logan Godkin, Jeremy L. Martin (University of Kansas)

Joint Mathematics Meetings
San Diego, CA
January 12, 2013
The chromatic polynomial of a graph

\(G = (V, E) \): graph (loops, multiple edges OK) with arbitrary orientation
\(n = |V|, m = |E|, k \in \mathbb{N} \)

Proper \(k \)-coloring: \(f : V \to [k] \) with \(vw \in E \implies f(v) \neq f(w) \)

Chromatic polynomial \(\chi_G(k) = \# \text{ proper } k \text{-colorings of } G \)

- \(\chi_G(k) = \text{ polynomial in } k = k^n - mk^{n-1} + \cdots \)
- Deletion-contraction: \(\chi_G(k) = \chi_{G-e}(k) - \chi_{G/e}(k) \)
- Specialization of Tutte polynomial
- Stanley reciprocity theorem: comb. interp. for \(\chi(-k) \)
Orient G arbitrarily; $\partial = \text{signed incidence/boundary matrix}$

\[
\begin{bmatrix}
-1 & -1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1 & 1 & -1 & 1
\end{bmatrix}
\]

Flow: $(f_e)_{e \in E}$ orthogonal to all rows of ∂
Tension: $(t_e)_{e \in E}$ orthogonal to all flows
Proper coloring: row vector $c = (c_v)_{v \in V}$ with $c \partial$ nowhere-zero

Flows/colorings/tensions can be modular (values in $\mathbb{Z}/k\mathbb{Z}$) or integral (values in $\{-k + 1, -k + 2, \ldots, k - 1\} \subseteq \mathbb{Z}$)
Flows and tensions

Orient G arbitrarily; $\partial = $ signed incidence/boundary matrix

\[
\begin{bmatrix}
-1 & -1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1 & 1 & -1 & 1 \\
\end{bmatrix}
\]

Flow: $(f_e)_{e \in E}$ orthogonal to all rows of ∂
Tension: $(t_e)_{e \in E}$ orthogonal to all flows
Proper coloring: row vector $c = (c_v)_{v \in V}$ with $c \partial$ nowhere-zero

Flows/colorings/tensions can be modular (values in $\mathbb{Z}/k\mathbb{Z}$) or integral (values in $\{-k + 1, -k + 2, \ldots, k - 1\} \subset \mathbb{Z}$)
Modular vs. integral

Modular k-flows/k-tensions
- Flows and tensions form \mathbb{Z}-modules [Tutte ’47]
- Counted by polynomials in k; specializations of Tutte poly
- Same for any abelian group of cardinality k

Integral k-flows/k-tensions
- Sign vectors correspond to orientations
- Counting functions are polynomials in k [Kochol ’02]
- Lattice points in inside-out polytopes [Beck–Zaslavsky ’05]
- Reciprocity for flows [Breuer–Sanyal ’12]
Cell Complexes

Goal: Extend theory of colorings/cuts/flows from graphs to cell complexes.

\(X = d \)-dimensional cell complex
\(F = \) facets \((d\)-dimensional faces\)
\(R = \) ridges \(((d - 1)\)-dimensional faces\)

\(\partial = \) cellular boundary matrix \(\in \mathbb{Z}^{R \times F} \)
\(\partial^* = \) cellular coboundary matrix \(\in \mathbb{Z}^{F \times R} \)
\(\partial_k^* = \partial \otimes \mathbb{Z}/k\mathbb{Z} \)
Cellular colorings, flows and tensions

\(X = \text{pure CW complex} \quad F, R = \text{facets, ridges} \)
\(K = [-k + 1, k - 1] \subset \mathbb{Z} \quad \partial = \partial X \in \mathbb{Z}^{\left|R\right| \times |F|} \)

<table>
<thead>
<tr>
<th>Thingamajig</th>
<th>Definition</th>
<th>Enumeration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modular coloring</td>
<td>(c \in (\mathbb{Z}_k)^R \text{ s.t. } c\partial \text{ nowhere-zero})</td>
<td>(\chi_X^*(k))</td>
</tr>
<tr>
<td>Modular flows</td>
<td>(\text{Im}(\partial^*_k)^\perp)</td>
<td>(\varphi_X^*(k))</td>
</tr>
<tr>
<td>Modular tensions</td>
<td>(\text{Im}(\partial^*_k)^{\perp \perp})</td>
<td>(\tau_X^*(k))</td>
</tr>
<tr>
<td>Integral coloring</td>
<td>(c \in K^R \text{ s.t. } c\partial \text{ nowhere-zero})</td>
<td>(\chi_X(2k - 1))</td>
</tr>
<tr>
<td>Integral flows</td>
<td>(\text{Im}(\partial^*)^{\perp} \cap K^F)</td>
<td>(\varphi_X(2k - 1))</td>
</tr>
<tr>
<td>Integral tensions</td>
<td>(\text{Im}(\partial^*)^{\perp \perp} \cap K^F)</td>
<td>(\tau_X(2k - 1))</td>
</tr>
</tbody>
</table>
Cellular orientations and compatibility

Definition
An orientation of X is a sign vector $\varepsilon \in \{1, -1\}^F$.

An orientation ε and tension/flow $x \in \mathbb{Z}^F$ are compatible if $\varepsilon_f x_f \geq 0$ for every f.

ε is acyclic if it is not compatible with any nonzero flow.
ε is totally cyclic if for every facet f, there is a ε-compatible flow x with $x_f > 0$.
Properties of the modular chromatic function $\chi^*_X(k)$

1. Deletion/contraction for facet/ridge pairs with degree 1
2. Closed formula:
 \[
 \chi^*_X(k) = \sum_{J \subseteq F} (-1)^{|J|} |\tilde{H}^d(X_J; \mathbb{Z}_k)| \; k^{n-|J|}
 \]
3. Quasipolynomial in k; bound on period
4. All ∂J unimodular \implies polynomial in k, T-G invariant

- Generalizes chromatic polynomial of a graph
- Comparable theorems for tension/flow polynomials (simplicial case: Beck–Kemper)
Integral coloring reciprocity

Theorem

- Acyclic orientations of X \leftrightarrow regions of hyperplane arrangement \mathcal{H}_X with normals $= \text{columns of } \partial$
- $(-1)^n \chi_X(-2k - 1) = \# \text{ compatible pairs } (\varepsilon, c)$
- c integral k-coloring, ε orientation
- $|\chi_X(-1)| = \# \text{ acyclic orientations of } X$

Proof: count lattice points in inside-out polytope $(-1, 1)^n \setminus \mathcal{H}_X$; apply Ehrhart-Macdonald reciprocity

(Graph case: Stanley '73, Greene '77)
Integral tension reciprocity

Nowhere-zero integral k-tensions $=$ lattice points in interior of inside-out polytope

$$T = K^F \cap \text{Rowsp } \partial \setminus B$$

where $B = \text{Boolean arrangement of coordinate hyperplanes}$

Theorem

- Acyclic orientations of $X \leftrightarrow$ regions of T
- $|\tau_X(-2k - 1)| = \# \text{ compatible pairs } (\varepsilon, \psi)$:
 - ψ integral k-tension, ε orientation
- $|\tau_X(-1)| = \text{number of acyclic orientations}$

(Graph case: Chen ’10, Dall ’08)
Integral flow reciprocity

Nowhere-zero integral k-flows $=$ lattice points in interior of inside-out polytope

$$W = K^F \cap \ker \partial \setminus B$$

where $B =$ Boolean arrangement of coordinate hyperplanes

Theorem

- Totally cyclic orientations of $X \longleftrightarrow$ regions of W
- $|\varphi_X(-2k - 1)| = \# compatible pairs (ε, w): w integral k-flow, ε orientation
- $|\varphi_X(-1)| = number of totally cyclic orientations

(Graph case: Beck–Zaslavsky '06)
Modular reciprocity

Modular reciprocity is trickier.

Geometrically: Modular flows/tensions correspond to lattice points in a “periodic inside-out polytope”

Difficult part: How do you associate an orientation (i.e. a sign vector) with a modular flow?

Idea: Breuer–Sanyal ’12 (modular flow reciprocity for graphs)
Related work: Chen–Stanley ’12
Modular flow reciprocity

Theorem

Let X be a cell complex with no coloops. Then

$$|\varphi^*(X)(-k)| = \# \left\{ (\tilde{w}, \sigma) : \tilde{w} \text{ is a } \mathbb{Z}_k \text{-flow on } X \text{ and } \sigma : \text{zero}(\tilde{w}) \rightarrow \{-1, 1\} \text{ extends to a totally cyclic orientation} \right\}$$

Corollary

$$|\varphi^*_X(-1)| = \text{number of totally cyclic orientations}$$
Modular tension reciprocity

Theorem

Let X be a cell complex with no loops. Then

$$|\tau^*_X(-k)| = \# \left\{ (\bar{t}, \sigma) : \bar{t} \text{ is a } \mathbb{Z}_k\text{-tension on } X \text{ and } \sigma : \text{zero}(\bar{t}) \to \{-1, 1\} \text{ extends to an acyclic orientation} \right\}$$

Corollary

$$|\tau^*_X(-1)| = \text{number of acyclic orientations}$$
Modular reciprocity: proof sketch

(Idea + graph case: Breuer–Sanyal 2012)

For $k > 0$, interpret $\varphi^*_X(k)$ as sum of Ehrhart functions of disjoint union of components of $(-k, k)|^F|

\bar{x} \in (\mathbb{Z}_k)^F$ is a flow \iff some (= any) lift $x \in \mathbb{Z}^F$ has $\partial x \in (k\mathbb{Z})^R

b \in \mathbb{Z}^R \rightsquigarrow P^\circ(b) = \{ w \in (0, 1)^F : \partial w = b \}

\varphi^*_X(k) = \sum_b \text{Ehr}(P^\circ_b, k)

Then apply Ehrhart-Macdonald reciprocity.
Modular reciprocity: proof sketch

Example: \(\partial = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \)

\(P^\circ(0, 0) = \text{point } (0, 0) \quad P^\circ(1, 2) = \text{line segment } (1, 0) \text{ to } (0, \frac{1}{2}) \)

\(P^\circ(3, 6) = \text{point } (1, 1) \quad P^\circ(2, 4) = \text{line segment } (1, \frac{1}{2}) \text{ to } (0, 1) \)

\(\varphi_X^*(k) = \text{number of interior lattice points in union of } k^{th} \text{ dilates} \)

\(|\varphi_X^*(-k)| = \text{number of lattice points in closed union of } k^{th} \text{ dilates} \)
Modular reciprocity: proof sketch

- Lattice points on boundaries of $P(b)$’s have coordinates 0 mod k, i.e., somewhere-zero modular flows (which may admit more than one totally cyclic orientation)

- For bijection between these lattice points and $(\bar{\nu}, \sigma)$, sign = choice of whether to lift 0 mod k to 0 or $k \in \mathbb{Z}$ (requires integral reciprocity!)
Further Directions

1. Is there a non-TU cell complex X whose modular chromatic function $\chi^*_X(k)$ is polynomial?

 Breuer–Sanyal: used KRS to interpret values of Tutte polynomial of a graph at positive integers (a la Reiner ’99).
 Generalize to cell complexes whose tension and flow functions are polynomials?

3. **Hopf algebra** point of view: chromatic polynomial = combinatorial Hopf morphism from graphs to polynomials;
 reciprocity = inversion of characters