Spanning Trees of Simplicial Complexes

Jeremy Martin
University of Kansas

RMMC 2011
University of Wyoming
Le Menu

Spanning Trees of Simplicial Complexes
1 Appetizer: Graphs
 - The incidence and Laplacian matrices
 - The matrix-tree theorem
 - The chip-firing game
 - The critical group
1 Appetizer: Graphs
 - The incidence and Laplacian matrices
 - The matrix-tree theorem
 - The chip-firing game
 - The critical group

2 Main Course: Simplicial Complexes
 - Crash course in algebraic topology
 - Simplicial spanning trees
 - Simplicial matrix-tree theorems
 - Simplicial critical groups

Main course is joint work with Art Duval (U. of Texas, El Paso) and Caroline Klivans (U. of Chicago)
Appetizer: Graphs
Spanning Trees

Definition A **spanning tree** of a graph $G = (V, E)$ is a set of edges T (or, equivalently, a subgraph (V, T)) such that:

1. (V, T) is **connected**: every pair of vertices is joined by a path
2. (V, T) is **acyclic**: there are no cycles
3. $|T| = |V| - 1$.

Any two of these conditions together imply the third.
Spanning Trees of Simplicial Complexes
Spanning Trees
Spanning Trees

Spanning Trees of Simplicial Complexes
Counting Spanning Trees

$$\tau(G) = \text{number of spanning trees of } G$$

- $\tau(\text{tree}) = 1$
- $\tau(\text{n-cycle}) = n$

- Complete graph: $\tau(K_n) = n^{n-2}$ (Cayley’s formula)
- Complete bipartite graph: $\tau(K_{n,m}) = n^{m-1}m^{n-1}$
- Many other enumeration formulas for nice graphs (threshold graphs, hypercubes, ...)
The Incidence Matrix

Definition (Signed) incidence matrix ∂ of G

- Rows indexed by vertices; columns indexed by edges
- Each column has one 1 and one -1 corresponding to its endpoints, and 0s elsewhere.
The Incidence Matrix

Definition **(Signed) incidence matrix** ∂ of G

- Rows indexed by vertices; columns indexed by edges
- Each column has one 1 and one -1 corresponding to its endpoints, and 0s elsewhere.

$$G = \begin{array}{c}
\bullet & \bullet & \bullet & \bullet \\
1 & 2 & 3 & 4
\end{array}$$

$$\partial = \begin{pmatrix}
12 & 13 & 13 & 23 & 24 \\
1 & 1 & -1 & 0 & 0 \\
2 & -1 & 0 & 0 & -1 & 1 \\
3 & 0 & -1 & 1 & 1 & 0 \\
4 & 0 & 0 & 0 & 0 & -1
\end{pmatrix}$$
The Incidence Matrix

\[G = \begin{array}{c}
1 \\
\bullet \\
2 \\
\bullet \\
3 \\
\bullet \\
4 \\
\end{array} \]

\[\partial = \begin{pmatrix}
12 & 13 & 13 & 23 & 24 \\
1 & 1 & 1 & -1 & 0 & 0 \\
-1 & 0 & 0 & -1 & 1 \\
0 & -1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 \\
\end{pmatrix} \]
The Incidence Matrix

\[G = \begin{array}{c}
1 \\
3 \\
2 \\
4
\end{array} \quad \partial = \begin{pmatrix}
12 & 13 & 13 & 23 & 24 \\
1 & 1 & 1 & -1 & 0 & 0 \\
2 & -1 & 0 & 0 & -1 & 1 \\
3 & 0 & -1 & 1 & 1 & 0 \\
4 & 0 & 0 & 0 & 0 & -1
\end{pmatrix} \]

- A set of edges is a spanning tree of \(G \) iff the corresponding set of columns of \(\partial \) is a basis for the column space.
A set of edges is a spanning tree of G \textit{iff} the corresponding set of columns of ∂ is a basis for the column space.
The Incidence Matrix

- A set of edges is a spanning tree of \(G \) iff the corresponding set of columns of \(\partial \) is a basis for the column space.

- (Exercise: Translate “cycle”, “acyclic”, “dimension”, other graph-theoretic and linear-algebraic terms across this correspondence. This amounts to describing the graphic matroid of \(G \).)
A set of edges is a spanning tree of G iff the corresponding set of columns of ∂ is a basis for the column space.

(Exercise: Translate “cycle”, “acyclic”, “dimension”, other graph-theoretic and linear-algebraic terms across this correspondence. This amounts to describing the graphic matroid of G.)

If we can count column bases, we can count spanning trees.
The Laplacian Matrix

Definition The Laplacian matrix of G is $L = \partial \partial^T$.

Entries of L are scalar products of rows of ∂:

$$L(i,j) = \begin{cases}
\deg_G(i) & \text{if } i = j, \\
-(\# \text{ of edges joining } i \text{ and } j) & \text{otherwise}.
\end{cases}$$

- rank $L = \text{rank } \partial = \# \text{ vertices } - \# \text{ components}.$
The Laplacian Matrix

\[\partial = \begin{pmatrix} 1 & 1 & -1 & 0 & 0 \\ -1 & 0 & 0 & -1 & 1 \\ 0 & -1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix} \]

\[L = \begin{pmatrix} 3 & -1 & -2 & 0 \\ -1 & 3 & -1 & -1 \\ -2 & -1 & 3 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} \]
The Matrix-Tree Theorem (Kirchhoff, 1847)

(1) Let $0, \lambda_1, \lambda_2, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then the number of spanning trees of G is

$$\tau(G) = \frac{\lambda_1 \lambda_2 \cdots \lambda_{n-1}}{n}.$$
The Matrix-Tree Theorem (Kirchhoff, 1847)

(1) Let $0, \lambda_1, \lambda_2, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then the number of spanning trees of G is

$$\tau(G) = \frac{\lambda_1 \lambda_2 \cdots \lambda_{n-1}}{n}.$$

(2) Let $1 \leq i \leq n$. Form the reduced Laplacian \tilde{L} by deleting the i^{th} row and i^{th} column of L. Then

$$\tau(G) = \det \tilde{L}.$$
The Matrix-Tree Theorem

Sketch of proof: By the Binet-Cauchy formula from linear algebra,

\[
\det \tilde{\mathbf{L}} = \det \tilde{\partial} \tilde{\partial}^T = \sum_{A \subseteq E} (\det \tilde{\partial}_A)^2 \quad (\tilde{\partial}: \text{delete a row from } \partial)
\]

\[|A| = n-1\]
Sketch of proof: By the Binet-Cauchy formula from linear algebra,

\[\det \tilde{L} = \det \tilde{\partial} \tilde{\partial}^T = \sum_{A \subseteq E \atop |A| = n-1} (\det \tilde{\partial}_A)^2 \]

\[(\tilde{\partial}: \text{delete a row from } \partial) \]

\[= \sum_A \begin{cases}
1 & \text{if } A \text{ is a column basis for } \partial \\
0 & \text{if it isn’t}
\end{cases} \]
The Matrix-Tree Theorem

Sketch of proof: By the Binet-Cauchy formula from linear algebra,

$$\det \tilde{L} = \det \tilde{\partial} \tilde{\partial}^T = \sum_{A \subseteq E} (\det \tilde{\partial}_A)^2 \quad (\tilde{\partial}: \text{delete a row from } \partial)$$

$$= \sum_A \begin{cases} 1 & \text{if } A \text{ is a column basis for } \partial \\ 0 & \text{if it isn’t} \end{cases}$$

$$= \text{number of column bases of } \partial$$
The Matrix-Tree Theorem

Sketch of proof: By the Binet-Cauchy formula from linear algebra,

$$\det \tilde{\mathbf{L}} = \det \tilde{\partial} \tilde{\partial}^T = \sum_{A \subseteq E} \left(\det \tilde{\partial}_A \right)^2 \quad (\tilde{\partial}: \text{delete a row from } \partial)$$

$$= \sum_A \begin{cases} 1 & \text{if } A \text{ is a column basis for } \partial \\ 0 & \text{if it isn’t} \end{cases}$$

$$= \text{number of column bases of } \partial$$

$$= \text{number of spanning trees!}$$
The Matrix-Tree Theorem

Example

\[G = \begin{array}{c}
3 & -1 & -2 & 0 \\
-1 & 3 & -1 & -1 \\
-2 & -1 & 3 & 0 \\
0 & -1 & 0 & 1
\end{array} \]

\[L = \begin{array}{cccc}
3 & -1 & -2 & 0 \\
-1 & 3 & -1 & -1 \\
-2 & -1 & 3 & 0 \\
0 & -1 & 0 & 1
\end{array} \]

\[\tilde{L} = \begin{array}{cccc}
3 & -1 & -1 \\
-1 & 3 & 0 \\
-1 & 0 & 1
\end{array} \]

Eigenvalues: 0, 1, 4, 5

\[\det \tilde{L} = 5 \]

\[(1 \cdot 4 \cdot 5)/4 = 5 \]
The Matrix-Tree Theorem

Example \(G = K_n \) (complete graph on \(n \) vertices)

\[
L(K_n) = \begin{bmatrix}
n - 1 & -1 & \ldots & -1 \\
-1 & n - 1 & \ldots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \ldots & n - 1
\end{bmatrix}
\]

- Eigenvalues: 0 (multiplicity 1), \(n \) (multiplicity \(n - 1 \))
- \(\tau(K_n) = \frac{n^{n-1}}{n} = n^{n-2} \).
Example: The Hypercube

- $G = Q_n = 1$-skeleton of n-dimensional hypercube

- Eigenvalues of L: $0, 2, 4, \ldots, 2n$, with multiplicities \(\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n} \)

$$\tau(Q_n) = \prod_{k=2}^{n} (2k) \binom{n}{k}.$$
Example: The Hypercube

- $G = Q_n = 1$-skeleton of n-dimensional hypercube

- Eigenvalues of L: $0, 2, 4, \ldots, 2n$, with multiplicities $\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n}$

$$\Rightarrow \tau(Q_n) = \prod_{k=2}^{n} (2k)^{\binom{n}{k}}.$$

Open Problem Find a bijective proof of this formula.
The Chip-Firing Game
The Chip-Firing Game

Spanning Trees of Simplicial Complexes
The Chip-Firing Game
The Chip-Firing Game

Spanning Trees of Simplicial Complexes
The Chip-Firing Game

Spanning Trees of Simplicial Complexes
The Chip-Firing Game

Spanning Trees of Simplicial Complexes
The Chip-Firing Game

- \(G \): graph with vertex set \(\{1, 2, \ldots, n\} \)
- Each vertex \(i < n \) has a finite number \(c_i \) of poker chips
- A vertex **fires** by giving one chip to each of its neighbors
- Vertex \(n \), the **bank**, only fires if no other vertex can fire
- Vertices other than the bank cannot go into debt
- **Chip configuration** = vector \(\mathbf{c} = (c_1, \ldots, c_{n-1}) \in \mathbb{N}^{n-1} \)
The Chip-Firing Game

Theorem (Biggs, Dhar?, Björner–Lovász–Shor)
Every initial chip configuration determines a unique critical configuration, regardless of the order of firing.
The Chip-Firing Game

Theorem (Biggs, Dhar?, Björner–Lovász–Shor)
Every initial chip configuration determines a unique critical configuration, regardless of the order of firing.

Recall that the Laplacian matrix of G is $L = [\ell_{ij}]_{1 \leq i, j \leq n}$ where

$$\ell_{ij} = \begin{cases} \deg_G(i) & \text{if } i = j \\ -(\# \text{ of edges joining } i \text{ and } j) & \text{otherwise.} \end{cases}$$

- Firing vertex $i \leftrightarrow$ subtracting i^{th} column of L from c.
The Chip-Firing Game

Firing keeps c in the same coset of $\text{colspace}(L) \subset \mathbb{Z}^n$.
The Chip-Firing Game

Firing keeps c in the same coset of $\text{colspace}(L) \subset \mathbb{Z}^n$.

I.e., each chip configuration determines an element of the quotient group $\mathbb{Z}^n / \text{colspace}(L)$. ...
Firing keeps c in the same coset of $\text{colspace}(L) \subset \mathbb{Z}^n$.

I.e., each chip configuration determines an element of the quotient group $\mathbb{Z}^n / \text{colspace}(L)$.

...or, if we ignore the bank, an element of $\mathbb{Z}^{n-1} / \text{colspace}(\tilde{L})$.
Firing keeps c in the same coset of $\text{colspace}(L) \subset \mathbb{Z}^n$. I.e., each chip configuration determines an element of the quotient group $\mathbb{Z}^n / \text{colspace}(L)$.

...or, if we ignore the bank, an element of $\mathbb{Z}^{n-1} / \text{colspace}(\tilde{L})$.

Definition The critical group of G is

$$K(G) = \mathbb{Z}^{n-1} / \text{colspace}(\tilde{L}).$$

- $|K(G)| = \tau(G)$ by Matrix-Tree Theorem
- Critical configurations are a system of coset representatives
Cuts and Flows

\[G = \begin{tabular}{c|c|c|c}
1 & 2 \\
3 & 4
\end{tabular} \]

\[\partial = \begin{pmatrix}
12 & 13 & 13 & 23 & 24 \\
1 & 1 & 1 & -1 & 0 & 0 \\
-1 & 0 & 0 & -1 & 1 \\
0 & -1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{pmatrix} \]
Cuts and Flows

\[G = \begin{tikzpicture} % Graph edges here \end{tikzpicture} \]

\[\partial = \begin{pmatrix} 12 & 13 & 13 & 23 & 24 \\ 1 & 1 & 1 & -1 & 0 & 0 \\ 2 & -1 & 0 & 0 & -1 & 1 \\ 3 & 0 & -1 & 1 & 1 & 0 \\ 4 & 0 & 0 & 0 & 0 & -1 \end{pmatrix} \]

Cut space \[C = \text{colspace}(\partial^T) \] (generated by edge cuts)
Cuts and Flows

\[G = \begin{array}{c}
\text{1} \\
\text{2} \\
\text{3} \\
\text{4}
\end{array} \]

\[\partial = \begin{pmatrix}
12 & 13 & 13 & 23 & 24 \\
1 & 1 & -1 & 0 & 0 \\
-1 & 0 & 0 & -1 & 1 \\
0 & -1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{pmatrix} \]

Cut space \[C = \text{colspace}(\partial^T) \] (generated by edge cuts)

Flow space \[\mathcal{F} = \ker(\partial) = C^\perp \] (generated by cycles)
Cuts and Flows

Cut space \(C = \text{colspace}(\partial^T) \)

Flow space \(\mathcal{F} = \ker(\partial) = C^\perp \)
Cuts and Flows

Cut space \(C = \text{colspace}(\partial^T) \)

Flow space \(\mathcal{F} = \ker(\partial) = C^\perp \)

Theorem [Bacher, de la Harpe, Nagnibeda 1997]

\[
K(G) = \mathbb{Z}^{n-1} / \text{colspace } \tilde{L} \cong \mathbb{Z}^E / (C \oplus F).
\]
Main Course: Simplicial Complexes
Definition A simplicial complex is a family $\Delta \subseteq \text{powerset}(\{1, 2, \ldots, n\})$ such that

$$\text{if } \sigma \in \Delta \text{ and } \sigma' \subseteq \sigma, \text{ then } \sigma' \in \Delta.$$

- Think of a simplicial complex as a higher-dimensional generalization of a graph.

- Elements of Δ are called faces or simplices.

- $\dim \sigma = |\sigma| - 1$

- $\dim \Delta = \max\{\dim \sigma \mid \sigma \in \Delta\}$

- $f_i(\Delta) =$ number of i-dimensional faces of Δ
Definition A **simplicial complex** is a family $\Delta \subseteq \text{powerset}(\{1, 2, \ldots, n\})$ such that

$$\text{if } \sigma \in \Delta \text{ and } \sigma' \subseteq \sigma, \text{ then } \sigma' \in \Delta.$$

- Simplicial polytopes (minus geometry)
- Every “reasonable” topological space can be represented as a simplicial complex
- Graphs = 1-dimensional simplicial complexes
- Simplicial complexes arise frequently in combinatorics: e.g., order complexes of posets
For $i \in \mathbb{N}$, the **i-dimensional boundary matrix** ∂_i of Δ records which $(i - 1)$-simplices are contained in which i-simplices.
For $i \in \mathbb{N}$, the **i-dimensional boundary matrix** ∂_i of Δ records which $(i - 1)$-simplices are contained in which i-simplices.

(E.g., $\partial_1 = \text{signed incidence matrix of 1-skeleton of } \Delta$ — records which vertices are contained in which edges.)
For $i \in \mathbb{N}$, the i-dimensional boundary matrix ∂_i of Δ records which $(i - 1)$-simplices are contained in which i-simplices.

(E.g., $\partial_1 =$ signed incidence matrix of 1-skeleton of Δ — records which vertices are contained in which edges.)

Fact $\partial_i \partial_{i+1} = 0$. Equivalently, $\text{im}(\partial_{i+1}) \subseteq \ker(\partial_i)$.
For $i \in \mathbb{N}$, the **i-dimensional boundary matrix** ∂_i of Δ records which $(i - 1)$-simplices are contained in which i-simplices.

(E.g., $\partial_1 =$ signed incidence matrix of 1-skeleton of Δ — records which vertices are contained in which edges.)

Fact $\partial_i \partial_{i+1} = 0$. Equivalently, $\text{im}(\partial_{i+1}) \subseteq \ker(\partial_i)$.

Definition The **ith (reduced) homology group** of Δ is

$$\tilde{H}_i(\Delta) = \ker(\partial_i) / \text{im}(\partial_{i+1})$$

$$\cong \mathbb{Z}^\beta_i(\Delta) \oplus \text{finite “torsion” group}$$
For $i \in \mathbb{N}$, the **i-dimensional boundary matrix** ∂_i of Δ records which $(i - 1)$-simplices are contained in which i-simplices.

(E.g., $\partial_1 =$ signed incidence matrix of 1-skeleton of Δ — records which vertices are contained in which edges.)

Fact \(\partial_i \partial_{i+1} = 0 \). Equivalently, \(\text{im}(\partial_{i+1}) \subseteq \ker(\partial_i) \).

Definition The **i\text{th (reduced) homology group** of Δ is

\[
\tilde{H}_i(\Delta) = \frac{\ker(\partial_i)}{\text{im}(\partial_{i+1})}
\cong \mathbb{Z}^{\tilde{\beta}_i(\Delta)} \oplus \text{finite “torsion” group}
\]

(If you’re new at this: Don’t worry about the twiddles!)
Why Should You Care About Homology?

- \(\tilde{H}_i(\Delta) \) measures holes (\(\tilde{\beta}_i \)) and nonorientability (torsion)
Why Should You Care About Homology?

- $\tilde{H}_i(\Delta)$ measures holes ($\tilde{\beta}_i$) and nonorientability (torsion)

- For any complex Δ, $\tilde{H}_0(\Delta) = \mathbb{Z} \# \text{ connected cpts} - 1$
 \[\tilde{H}_0(\Delta) = 0 \iff \Delta \text{ is connected.} \]
Why Should You Care About Homology?

- $\tilde{H}_i(\Delta)$ measures holes ($\tilde{\beta}_i$) and nonorientability (torsion)

- For any complex Δ, $\tilde{H}_0(\Delta) = \mathbb{Z} \# \text{ connected cpts} - 1$

 $\tilde{H}_0(\Delta) = 0 \iff \Delta \text{ is connected.}$

- If Δ is a connected graph, then $\tilde{H}_1(\Delta) = \mathbb{Z}^{e-v+1}$

 $\tilde{H}_1(\Delta) = 0 \iff \Delta \text{ is acyclic.}$
Why Should You Care About Homology?

- \(\tilde{H}_i(\Delta) \) measures holes (\(\tilde{\beta}_i \)) and nonorientability (torsion)

- For any complex \(\Delta \), \(\tilde{H}_0(\Delta) = \mathbb{Z}^{\#\text{ connected cpts}} - 1 \)
 \[\tilde{H}_0(\Delta) = 0 \iff \Delta \text{ is connected}. \]

- If \(\Delta \) is a connected graph, then \(\tilde{H}_1(\Delta) = \mathbb{Z}^{e-v+1} \)
 \[\tilde{H}_1(\Delta) = 0 \iff \Delta \text{ is acyclic}. \]

- If \(\Delta \) is a \(d \)-sphere, then
 \[\tilde{H}_i(\Delta) = \begin{cases} \mathbb{Z} & \text{for } i = d, \\ 0 & \text{for } i < d. \end{cases} \]
Why Should You Care About Homology?

What happens to the homology of Δ when you delete a d-dimensional facet?
Why Should You Care About Homology?

What happens to the homology of Δ when you delete a d-dimensional facet?

- **Case 1:** Pop a d-dimensional bubble: $\tilde{\beta}_d$ drops by 1
Why Should You Care About Homology?

What happens to the homology of \(\Delta \) when you delete a \(d \)-dimensional facet?

- **Case 1**: Pop a \(d \)-dimensional bubble: \(\tilde{\beta}_d \) drops by 1
- **Case 2**: Tear a \((d - 1)\)-dimensional hole: \(\tilde{\beta}_{d-1} \) increases by 1
Why Should You Care About Homology?

What happens to the homology of Δ when you delete a d-dimensional facet?

- **Case 1**: Pop a d-dimensional bubble: $\tilde{\beta}_d$ drops by 1
- **Case 2**: Tear a $(d - 1)$-dimensional hole: $\tilde{\beta}_{d-1}$ increases by 1

Fact The (reduced) Euler characteristic of Δ is

$$\tilde{\chi}(\Delta) = \sum_i (-1)^i f_i(\Delta) = \sum_i (-1)^i \tilde{\beta}_i(\Delta).$$
Definition Let Δ be a simplicial complex of dimension d.

A simplicial spanning tree (SST) is a subcomplex $\Upsilon \subset \Delta$, with $\Upsilon_{(d-1)} = \Delta_{(d-1)}$, such that

1. $\tilde{H}_d(\Upsilon; \mathbb{Z}) = 0$;
2. $\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$ is a finite group;
3. $f_d(\Upsilon) = f_{d-1}(\Delta) - \tilde{\beta}_d(\Delta) + \tilde{\beta}_{d-1}(\Delta)$.

Spanning Trees of Simplicial Complexes
Definition Let Δ be a simplicial complex of dimension d.

A **simplicial spanning tree (SST)** is a subcomplex $\Upsilon \subset \Delta$, with $\Upsilon_{(d-1)} = \Delta_{(d-1)}$, such that

1. $\tilde{H}_d(\Upsilon; \mathbb{Z}) = 0$;
2. $\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$ is a finite group;
3. $f_d(\Upsilon) = f_{d-1}(\Delta) - \tilde{\beta}_d(\Delta) + \tilde{\beta}_{d-1}(\Delta)$.

- When $d = 1$, this is just the usual graph-theoretic definition of a spanning tree.
Definition Let Δ be a simplicial complex of dimension d.

A **simplicial spanning tree (SST)** is a subcomplex $\Upsilon \subset \Delta$, with $\Upsilon_{(d-1)} = \Delta_{(d-1)}$, such that

1. $\tilde{H}_d(\Upsilon; \mathbb{Z}) = 0$;
2. $\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$ is a finite group;
3. $f_d(\Upsilon) = f_{d-1}(\Delta) - \tilde{\beta}_d(\Delta) + \tilde{\beta}_{d-1}(\Delta)$.

- When $d = 1$, this is just the usual graph-theoretic definition of a spanning tree.
- Any two of conditions 1,2,3 together imply the third (just as for graphs).
Examples of SSTs

What if Δ is a simplicial d-sphere?

- Recall that $\tilde{H}_d(\Delta) = \mathbb{Z}$. To make $\tilde{H}_d(\Upsilon) = 0$, “pop the bubble” by deleting a single facet from Δ. (But don’t delete more than one or \tilde{H}_{d-1} will become nonzero.)

- In particular, # of SSTs = # facets = $f_d(\Delta)$. (Analogous to the statement that the spanning trees of a cycle graph are formed by deleting a single edge.)
Let K_n^d be the d-skeleton of the n-vertex simplex, i.e.,

$$K_n^d = \left\{ F \subseteq \{1, 2, \ldots, n\} \mid \dim F \leq d \right\}$$

and let $\mathcal{T}(\Delta)$ denote the set of SSTs of Δ.
Kalai’s Theorem

Let K^d_n be the d-skeleton of the n-vertex simplex, i.e.,

$$K^d_n = \left\{ F \subseteq \{1, 2, \ldots, n\} \mid \dim F \leq d \right\}$$

and let $\mathcal{T}(\Delta)$ denote the set of SSTs of Δ.

Theorem [Kalai 1983]

$$\sum_{\gamma \in \mathcal{T}(K^d_n)} |\tilde{H}_{d-1}(\gamma; \mathbb{Z})|^2 = n^{\binom{n-2}{d}}.$$

- Setting $d = 1$ recovers Cayley’s formula $\tau(K_n) = n^{n-2}$.
Counting Simplicial Spanning Trees

\[\Delta = d\text{-dim’l simplicial complex with } |\tilde{H}_i(\Delta)| < \infty \ \forall \ i < d \]

\[L = \partial_d \partial_d^T \text{ (simplicial Laplacian)} \]

\[\tau_k(\Delta) = \sum_{\gamma \in T(\Delta_{(k)})} |\tilde{H}_{k-1}(\gamma)|^2 \text{ ("number" of } k\text{-dim’l trees")} \]

Simplicial Matrix-Tree Theorem I [Duval–Klivans–JLM 2007]

\[\tau_d(\Delta) = |\tilde{H}_{d-2}(\Delta)|^2 \cdot \frac{\text{product of nonzero eigenvalues of } L}{\tau_{d-1}(\Delta)}. \]
Counting Simplicial Spanning Trees

\[\tau_k(\Delta) = \sum_{\gamma \in T(\Delta_{(k)})} |\tilde{H}_{k-1}(\gamma)|^2 \]

\(\Gamma \) = simplicial spanning tree of \(\Delta_{(d-1)} \)

\(L_{\Gamma} \) = reduced Laplacian obtained from \(L = \partial_d \partial_d^T \) by deleting \(\Gamma \)

Simplicial Matrix-Tree Theorem II

\[\tau_d(\Delta) = \frac{|\tilde{H}_{d-2}(\Delta)|^2}{|\tilde{H}_{d-2}(\Gamma)|^2} \det L. \]
The Punchline: You can count the spanning trees of a simplicial complex using Laplacians, just as you can for a graph...
The Punchline: You can count the spanning trees of a simplicial complex using Laplacians, just as you can for a graph...

...but some trees may be more equal than others.
An Example: The Equatorial Bipyramid B

Facets: 123 ("equator")
124, 134, 234 ("northern")
125, 135, 235 ("southern")

$f(\Delta) = (5, 9, 7)$

$\tilde{H}_0(\Delta) = 0$
$\tilde{H}_1(\Delta) = 0$
$\tilde{H}_2(\Delta) = \mathbb{Z}^2$
Example 1: The Equatorial Bipyramid

To make an SST of B, we need to pop two bubbles.
Example 1: The Equatorial Bipyramid

To make an SST of B, we need to pop two bubbles.

- Delete equator and any other triangle: 6 SSTs
- Delete one northern and one southern triangle: $3 \times 3 = 9$ SSTs
- Total: $\tau_2(B) = 15$.
Example 1: The Equatorial Bipyramid

To make an SST of B, we need to pop two bubbles.

- Delete equator and any other triangle: 6 SSTs
- Delete one northern and one southern triangle: $3 \times 3 = 9$ SSTs
- Total: $\tau_2(B) = 15$.
- Meanwhile, $\tau_1(B) = \tau_1(K_5 \text{ minus an edge}) = 75$.
Example 1: The Equatorial Bipyramid

To make an SST of B, we need to pop two bubbles.

- Delete equator and any other triangle: 6 SSTs
- Delete one northern and one southern triangle: $3 \times 3 = 9$ SSTs
- Total: $\tau_2(B) = 15$.
- Meanwhile, $\tau_1(B) = \tau_1(K_5 \text{ minus an edge}) = 75$.

SMTT-I: Eigenvalues of L are 5, 5, 5, 3, 3, 0, 0, 0, 0
$\tau_2 = \frac{(\text{product of NZEs})}{\tau_1} = \frac{5^33^2}{75} = 15$.
Example 1: The Equatorial Bipyramid

To make an SST of B, we need to pop two bubbles.

- Delete equator and any other triangle: 6 SSTs
- Delete one northern and one southern triangle: $3 \times 3 = 9$ SSTs
- Total: $\tau_2(B) = 15$.
- Meanwhile, $\tau_1(B) = \tau_1(\overline{K_5} \text{ minus an edge}) = 75$.

SMTT-I: Eigenvalues of L are $5, 5, 5, 3, 3, 0, 0, 0, 0$

$\tau_2 = \frac{(\text{product of NZEs})}{\tau_1} = \frac{5^33^2}{75} = 15$.

SMTT-II: Take $\Gamma = \{12, 13, 14, 15\}$; then $\det L_\Gamma = 15$.
Some Open Problems

Pick your favorite simplicial (or even cell) complex and count its spanning trees!

It helps if the complex is *Laplacian integral* (i.e., the Laplacian matrix has integer eigenvalues).

- Complete colorful complexes: Adin ’92
- Shifted complexes: Duval–Reiner ’03, weighted DKM ’07
- Skeletons of cubes: DKM ’10
- Matroid complexes: Kook–Reiner–Stanton ’01; *weighted*?
- Matching and chessboard complexes?
Critical Groups of Simplicial Complexes

Critical group of a graph G:

$$K(G) = \text{coker } \tilde{L} = \text{coker}(\tilde{\partial} \tilde{\partial}^T) = \mathbb{Z}^{|E|}/(C \oplus F)$$

where ∂ = incidence matrix; $C = \text{colspace } \partial^T$; $F = \text{ker } \partial$.
Critical group of a graph G:

$$K(G) = \text{coker } \tilde{L} = \text{coker}(\tilde{\partial}\tilde{\partial}^T) = \mathbb{Z}^{|E|}/(C \oplus F)$$

where ∂ = incidence matrix; $C = \text{colspace } \partial^T$; $F = \text{ker } \partial$.

Definition The $(i - 1)^{\text{th}}$ critical group of a complex Δ is

$$K_{i-1}(\Delta) = \text{coker } \tilde{L}_{i-1}^{ud} = \text{coker}(\tilde{\partial}_i\tilde{\partial}_i^T) = \mathbb{Z}^{f_i(\Delta)}/(C_i \oplus F_i)$$

where $C_i = \text{colspace}(\partial_i^T)$, $F_i = \ker(\partial_i)$.
Definition The \((i - 1)th \) critical group of a complex \(\Delta\) is

\[
K_{i-1}(\Delta) = \text{coker } \tilde{L}_{i-1}^\text{ud} = \text{coker}(\tilde{\partial}_i \tilde{\partial}_i^T) = \mathbb{Z}^f_i(\Delta)/(\mathcal{C}_i \oplus \mathcal{F}_i)
\]

where \(\mathcal{C}_i = \text{colspace}(\tilde{\partial}_i^T), \mathcal{F}_i = \text{ker}(\partial_i)\).
Critical Groups of Simplicial Complexes

Definition The \((i - 1)\)th critical group of a complex \(\Delta\) is

\[K_{i-1}(\Delta) = \text{coker} \, \tilde{L}_{i-1}^{ud} = \text{coker} (\tilde{\partial}_i \tilde{\partial}_i^T) = \mathbb{Z}^{f_i(\Delta)} / (C_i \oplus F_i) \]

where \(C_i = \text{colspace} (\partial_i^T)\), \(F_i = \ker (\partial_i)\).

Theorem [DKM’10] \(|K_{i-1}(\Delta)| = \tau_i(\Delta)\) for all \(i\).
Open Problem

Develop a simplicial analogue of the chip-firing game whose critical configurations correspond to elements of the simplicial critical group.