[I] (40pts) (1) Solve

\[z^2 - \sqrt{-3} z + 6 = 0, \]

within the complex number system \(\mathbb{C} \).

[Answer]:

\[z = \]

\[\quad \]

\(\cdot \)
(2) Solve

$$z^2 + 2\sqrt{-2}z + 1 = 0,$$

within the complex number system \mathbb{C}.

[Answer]:

$$z = \frac{-\sqrt{-2} \pm \sqrt{(-\sqrt{-2})^2 - 4 \cdot 1 \cdot 1}}{2}.$$

\cdots
(3) Solve

\[z^2 + 6 \sqrt{-10} \, z - 90 = 0, \]

within the complex number system \(\mathbb{C} \).

[Answer]:

\[z = \]

\[\text{[value]} \].
(I) continued

(4) Solve

\[z^2 + \left(4 - \sqrt{-2} \right) z + 7 + \sqrt{-2} = 0, \]

within the complex number system \(\mathbb{C} \).

\[\text{Answer} \]

\[z = \]

\[\]
(5) Solve

\[z^2 + \left(\sqrt{5} + \sqrt{-3} - \sqrt{-5} \right) z + \sqrt{15} - \sqrt{-1} \cdot 5 = 0, \]

within the complex number system \(\mathbb{C} \).

[Answer]:

\[z = \]

\[\text{ } \]
(6) Solve

\[z^2 - 3z + 2 - \sqrt{-1} = 0, \]

within the complex number system \(\mathbb{C} \).

[Answer]:

\[z = \]

\[\text{.} \]
(7) Let

\[\alpha = \frac{1 + \sqrt{-3}}{2}. \]

Solve

\[z^2 - \alpha z + \alpha^2 = 0, \]

within the complex number system \(\mathbb{C} \).

Answer:

\[z = \]

\[\]
(8) Solve

\[z^2 + \left(1 + e^{\sqrt{-1} \frac{6\pi}{7}} \right) z - \frac{-1 + \sqrt{-7}}{2} = 0, \]

within the complex number system \(\mathbb{C} \).

[Answer]:

\[z = \]

\[\quad \]