Linear operators and linear differential equations

Definition: An operator is a function whose domain is a set of functions (not a set of real or complex numbers).

Examples: In these examples, all our functions are assumed to be differentiable functions of \(t \). The functions are written as \(f, g, h, \) etc., and not \(f(t), g(t), h(t) \), since the last three are numbers, and not functions.

- Multiplication of a function by the number 2 is an operator: it could be written \(M_2[x] = 2x \). This means that for all \(t \), the function \(M_2[x](t) = 2x(t) \).

- Differentiation with respect to \(t \) is an operator, denoted by \(D \): by definition, for any differentiable function \(f \),
 \[
 D[x] = x', \text{ or for all } t, D[x](t) = x'(t).
 \]
 Taking two derivatives:
 \[
 D^2[x] = D[D[x]] \text{ or for all } t, D^2[x](t) = x''(t).
 \]

- Integration from 0 to \(t \):
 \[
 \text{Int}_0^t[x](t) = \int_0^t x(s) \, ds.
 \]

- Some other operators:
 \[
 \text{Sq}[x] = x^2 : \text{that is, } \text{Sq}[x](t) = x^2(t) = x(t)x(t).
 \]
 \[
 \text{Sqrt}[x] = \sqrt{x}.
 \]

- There are also the well-known binary operators:
 \[
 [f + g] = f + g; \text{ and } [fg] = fg \text{ (meaning } (fg)(t) = f(t)g(t) \text{ for all } t).\]

- And last, but not least, the identity operator \(I \):
 \[
 I[x] = x.
 \]
 The identity operator applied to \(x \) just gives back \(x \). It "acts like" multiplication by 1. For completeness, we define \(D^0 = I \).

We can use addition and multiplication, together with other operators, to make more complicated operators:

\[
D^2[x] + \text{Sq}[x] + M_3[x] = g, \text{ meaning that, for all } t,
\]
\[
x''(t) + x^2(t) + 3x(t) = g(t).
\]

This is a second order ODE, of course, which is where we’re heading.

\[\square \]

Definition: An operator \(L \) is said to be linear if, for any constants \(c_1, c_2 \) and any (smooth) functions \(x_1, x_2 \),
\[
L[c_1x_1 + c_2x_2] = c_1x_1 + c_2x_2.
\]

Example: The second order differential equation \(x'' + px' + qx = f \) can be written as \(L[x] = f \), where
\[
L = D^2 + pD + qI.
\]

So \(L[x] = x'' + px' + qx \), and \(L \) is linear.

Proof: For any \(c_1, c_2, x_1, x_2 \), we compute
\[
L[c_1x_1 + c_2x_2] = (c_1x_1 + c_2x_2)'' + p(c_1x_1 + c_2x_2)' + q(c_1x_1 + c_2x_2)
= c_1x_1'' + c_2x_2'' + c_1px_1' + c_2px_2' + c_1qx_1 + c_2qx_2
= c_1(x_1'' + px_1' + qx_1) + c_2(x_2'' + px_2' + qx_2)
= c_1L[x_1] + c_2L[x_2].
\]

For this reason, \(L \) is said to be a linear second order differential operator and the DE \(L[x] = f \) is called a second order linear differential equation.

\[\square \]

Definition: A linear differential operator (LDO) of degree \(n \) is a polynomial in \(D \) of degree \(n \) whose coefficients are continuous functions of \(t \):
\[
L = a_n(t)D^n + a_{n-1}(t)D^{n-1} + \cdots + a_1(t)D + a_0(t)I.
\]

That is
\[
L[x] = a_nD^n[x] + a_{n-1}D^{n-1}[x] + \cdots + a_1D[x] + a_0x
= a_nx^{(n)} + a_{n-1}x^{(n-1)} + \cdots + a_1x' + a_0x.
\]

Note that we generally write just \(a_n \) rather than \(a_n(t) \), which is supposed to be understood.

It is tedious but straightforward to check that such an \(L \) is linear in the sense of the definition.

\[\square \]

Definition: A linear differential equation of order \(n \) (LDE) is an equation of the form \(L[x] = f \), where \(L \) is an \(n^{th} \) order LDO.

\[\square \]

Definition: The linear differential equation is said to be homogeneous if the right hand side is zero: \(L[x] = 0 \).

Solutions to linear homogeneous differential equations obey the superposition principle: if \(x_1 \) and \(x_2 \) are two solutions, then so is the linear combination \(c_1x_1 + c_2x_2 \) for any constants \(c_1 \) and \(c_2 \).
Proof: A function $y(t)$ is a solution to the homogeneous equation if $L[y] = 0$. By linearity, $L[c_1x_1 + c_2x_2] = c_1L[x_1] + c_2L[x_2]$ (and using the fact that x_1 and x_2 are solutions), this $= c_1 \cdot 0 + c_2 \cdot 0 = 0$. So $c_1x_1 + c_2x_2$ is also a solution.

Examples: (a) The equation $x'' + \omega^2 x = 0$ (ω is a constant) is linear. You can easily check that

$$x_1(t) = \cos(\omega t), \text{ and } x_2 = \sin(\omega t)$$

are both solutions to this LDE. It follows from the superposition principle that $x(t) = A \cos(\omega t) + B \sin(\omega t)$ is also a solution for any numbers A, B.

(b) A first order linear homogeneous DE, as you know, has the form $x' + px = 0$. If $\mu = e^{\int p}$ is the integrating factor, then

$$x_1(t) = e^{-\int_0^t p(s) ds}$$

is one solution, and so is $c_1x_1(t)$ for any constant c_1.

(c) There are also linear partial differential equations, in which the differential operators take the form

$$\frac{\partial}{\partial x} \frac{\partial}{\partial t}$$

and so on. So a linear partial differential equation for an unknown function $u(t, x)$ will be a polynomial in the partial derivatives with respect to t and x. For instance,

$$\frac{\partial u}{\partial t} - k \frac{\partial^2 u}{\partial x^2} = 0$$

is a homogeneous linear PDE of second order known as the heat equation or, in a slightly different context, the diffusion equation.

Exercise: Prove that solutions to the heat equation satisfy the superposition principle.

Note: the partial differential operators above are often written as $\partial_t, \partial_{xx}$, etc.