1. (10 points each) Evaluate the following limits. Justify your answer by applying the limit laws, a computation, or a theorem from class. Guessing the limit from a graph or a table will receive no credit.

a. \(\lim_{x \to \infty} \frac{0.001x + 2}{\sqrt{10,000x^2 + 1}} \)

b. \(\lim_{x \to \infty} \frac{\sin(10x)}{x} \)

c. \(\lim_{x \to 1} \frac{\sqrt{x}-1}{x^2-1} \)

d. \(\lim_{x \to \pi^-} e^{10 - \tan(x/2)} \)
2. (30 points) The function \(f = f(x) \) is defined as follows:

\[
 f(x) = \begin{cases}
 1 + \sqrt{1-x} & ; x \leq 1 \\
 1 - \frac{1}{x} & ; x > 1
 \end{cases}
\]

a. Evaluate \(f \circ f(-3), f^{-1}(3) \).

b. Find all the possible values of \(x \) at which the function \(f \) is continuous. Justify your answer.

c. Using the limit definition of the derivative, evaluate \(f'(2) \).

3. (15 points) Use the intermediate value theorem to prove that the equation: \(\arctan x = 1 - x \) has a real solution in the interval \((0, 1)\), then use your calculator to find the solution accurate to five decimal places. Include a copy of the graph that was used in the calculator.
4. (5 points each) **Multiple choice:** In each of the following, circle only the one choice that would make the corresponding statement true. You do not have to show work for this question.

(i) \(\lim_{x \to \infty} \frac{x \cos(1/x)}{\sqrt{7x^2 + x + 3}} = \)

(a) limit does not exist
(b) 0
(c) \(1/\sqrt{7}\)
(d) \(1/\sqrt{3}\)

(ii) If the function \(f(x) = e^x + c|x^3|\) is differentiable everywhere, then \(c\) must be

(a) positive
(b) negative
(c) zero
(d) an arbitrary real number

(iii) If \(\lim_{x \to a} f(x) = 0\) and \(\lim_{x \to a} g(x) = \infty\), then \(\lim_{x \to a} f(x)g(x) = \)

(a) never exists
(b) 0
(c) infinity
(d) depends on the the functions \(f(x), g(x)\)

(iv) If \(\lim_{x \to a} f(x) = 0\) and \(\lim_{x \to a} g(x) = \infty\), then \(\lim_{x \to a} f(x)/g(x) = \)

(a) never exists
(b) 0
(c) infinity
(d) depends on the the functions \(f(x), g(x)\)

(v) The function \(y = \sqrt{x}\) is

(a) differentiable everywhere
(b) continuous but not differentiable
(c) discontinuous
(d) not enough information to decide