Math 115 - LIMITS

Definition: A function f has limit L as x approaches a, written as $\lim_{x \to a} f(x) = L$, means as x gets close to a, but not equal a, $f(x)$ gets close to L.

Properties of Limits: Suppose $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$

1. $\lim_{x \to a} c = c \quad (c \in \mathbb{R})$
2. $\lim_{x \to a} x = a$
3. $\lim_{x \to a} (f(x))^r = (\lim_{x \to a} f(x))^r = L^r \quad (r \in \mathbb{R})$
4. $\lim_{x \to a} cf(x) = c(\lim_{x \to a} f(x)) = cL$
5. $\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = L \pm M$
6. $\lim_{x \to a} f(x)g(x) = (\lim_{x \to a} f(x))(\lim_{x \to a} g(x)) = LM$
7. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M}$ if $M \neq 0$

Definition: $\lim_{x \to \infty} f(x) = L$ means as x gets larger and larger, $f(x)$ gets close to L.

$\lim_{x \to -\infty} f(x) = L$ means as x gets smaller and smaller, $f(x)$ gets close to L.

Fact: For $n > 0$, $\lim_{x \to \infty} \frac{1}{x^n} = 0$ and $\lim_{x \to -\infty} \frac{1}{x^n} = 0$.

Definition: $\lim_{x \to a^-} f(x) = L$ means as x approaches a from the left side of a, but not equal a, $f(x)$ gets close to L. $\lim_{x \to a^+} f(x) = L$ means as x approaches a from the right side of a, but not equal a, $f(x)$ gets close to L.

Fact: $\lim_{x \to a} f(x) = L$ iff $\lim_{x \to a^-} f(x) = L$ and $\lim_{x \to a^+} f(x) = L$

Definition: A function f is **continuous** at $x = a$ if

1. $f(a)$ is defined,
2. $\lim_{x \to a} f(x) = L$, and
3. $L = f(a)$.

Fact: If a function f is the quotient of two polynomials $p(x), q(x)$, $f(x) = \frac{p(x)}{q(x)}$, then f is continuous at all $x = a$ such that $Q(a) \neq 0$.

IVT: (Intermediate Value Theorem) Let f be a function defined on a closed interval $[a, b]$. If w is between $f(a)$ and $f(b)$, there is at least one $c \in [a, b]$ such that $f(c) = w$.