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1 The axioms

1. Extensionality (definition of =): ∀x∀y (x = y iff ∀z z ∈ x iff z ∈ y).

2. Pairing (pairs exist): ∀x∀y∃z∀w (w ∈ z iff (w = x or w = y)).

3. Union (unions exist): ∀x∃z∀w (w ∈ z iff ∃y (w ∈ y and y ∈ x)).

4. Power set (power sets exist): ∀x∃z∀w(w ∈ z iff w ⊂ x).

5. Regularity (∀x (x,∈) has a minimal element): ∀x∃y (y ∈ x and y ∩ x = ∅).
6. Infinity (there is an infinite set): ∃x(x 6= ∅ and ∀y ( if y ∈ x then y ∪ {y} ∈ x)).

7. Choice (choice functions exist): ∀x 6= ∅ (if ∅ /∈ x then ∃f (f a function, dom f = x and
∀y ∈ x f(y) ∈ y).

8. Comprehension Schema (restricted formulas define sets): Let ϕ be a formula. ∀x∃z (y ∈ z iff
(y ∈ x and ϕ(y)).

9. Replacement Schema (ranges of functions exist): Let ϕ be a formula. ∀x(if ∀y ∈ x (ϕ(y, z)
and ϕ(y, w)⇒ z = w) then ∃u ∀v (v ∈ u iff ∃y ∈ x ϕ(y, v))).1

1#’s 1 through 8 are due to Zermelo; #9 is due to Fraenkel.
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2 AD sets and ∆ systems

Definition 1. (a) A ⊂ [κ]κ is an almost disjoint family on κ iff ∀A,B ∈ A |A ∩ B| < κ. (b)
a = inf{|A| : A is maximal almost disjoint on ω}.

By AC, there is always a maximal almost disjoint family on κ. Maximal almost disjoint families
on ω are called MAD families.

Theorem 1. Let κ be regular. If A ⊂ [κ]κ is almost disjoint and |A| = κ then there is B /∈ A so
that |A ∩B| < κ for all A ∈ A.

Proof. Let A = {Aα : α < κ}. Each |Aα \ (
⋃
β<αAβ)| = κ, so pick aα ∈ Aα \ (

⋃
β<αAβ). Let

B = {aα : α < κ}. B ∈ [κ]κ and |A ∩B| ≤ κ for all A ∈ A.

Corollary 1. If κ is regular there is an almost disjoint family on κ of size κ+.

Corollary 2. (CH) a = ω1.

Theorem 2. (MA) a = 2ω.

(to be proved later)

Theorem 3. Cons(a = ω1 < 2ω)

(to be proved much later if we’re lucky)

Theorem 4. There is an almost disjoint family on ω of size 2ω.

Proof. Let {sn : n < ω} enumerate all finite subsets of ω. If S ∈ [ω]ω and s ∈ [ω]<ω we define
s < S iff s is an initial segment of S. Define AS = {n : sn < S}. Then {AS : S ∈ [ω]ω} is an almost
disjoint family.

Definition 2. A family A is a ∆ system iff ∃R (called the root) so that if A,B ∈ A then A∩B = R.

Theorem 5. Let A be an uncountable collection of finite sets. Then A has an uncountable subfamily
which is a ∆ system.

This is the form we will generally use. Here is a stronger version:

Theorem 6. Let θ > κ, θ regular, so that if λ < θ then λ<κ < θ. Suppose |A| = θ and ∀A ∈
A |A| < κ. Then there is a ∆ system B ∈ [A]θ.

Proof. |
⋃
A| = θ so we may assume that A is a family of subsets of θ, by regularity unbounded in

θ.

By regularity of θ we may assume there is δ < κ so that every A ∈ A has order type δ. Let
A = {A(ξ) : ξ < δ} list A in increasing order.

Again by regularity, we may define ξ = inf{η : {A(η) : η < δ} is unbounded in θ}. Let
λ < θ be a bound on {A(η) : A ∈ A, η < ξ}. Since λ<κ < θ there is R, order type R = ξ and
AR = {A ∈ A : R(η) = A(η) for all η < ξ} has cardinality θ, hence {A(ξ) : A ∈ AR} is unbounded
in θ.

If C ∈ [A]<θ then
⋃
C is bounded below θ. Construct {Aα : α < θ} ⊂ AR so that if α < β then

supAα < Aβ(ξ), hence Aα ∩Aβ = R.
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3 CH

Definition 3. Let f, g ∈ ωω. f ≤∗ g iff {n : f(n) > g(n)} is finite.

Definition 4. (a) Let F ⊂ ωω. g dominates F iff ∀f ∈ F f ≤∗ g. (b) F is dominating iff
∀g ∈ ωω ∃f ∈ F g ≤∗ f . (c) F is bounded iff some g dominates it. (d) d = inf{|F | : F is
dominating}. (e) b = inf{|F | : F is unbounded}.

Theorem 7. Every countable subset of ωω is bounded. (I.e., d, b > ω.)

Proof. Let F = {fn : n < ω} (repetitions allowed). Let g(n) = 1 + Σk<nfk(n). Then g ≥∗ fn for
all n.

Corollary 3. (CH) d = b = ω1.

Theorem 8. (MA) d = b = 2ω.

(proof later)

Theorem 9. (a) Cons(b = ω1 < 2ω = d) (b) Cons(d = ω1 < 2ω).

(proof much later if we’re lucky)

Definition 5. A scale is a dominating family well-ordered by ≤∗.

Theorem 10. (CH) There is a scale.

Proof. Let {fα : α < ω1} list all elements of ωω. By the technique of theorem 9, construct
{gα : α < ω1} so each gα dominates {fβ : β < α} ∪ {gβ : β < α}.

Theorem 11. (MA) There is a scale, and every scale has order type 2ω.

(to be proved later)

Theorem 12. Cons(6 ∃ scale)

(proof much later if we’re lucky)

Definition 6. (a) Let a, b ⊂ ω. a ⊂∗ b iff a \ b is finite. (b) Let A ⊂ [ω]ω, b ⊂ ω. b is a
pseudo-intersection of A iff b is infinite and b ⊂∗ a for all a ∈ A.

Definition 7. (a) {aα : α < δ} ⊂ [ω]ω is a tower iff α < β ⇒ aβ ⊂∗ aα and {aα : α < δ} has no
pseudo-intersection. (b) t = inf{|T | : T a tower}.

By AC, there is always a tower.

Theorem 13. Let A be a countable filterbase of infinite sets under ⊂∗. Then A has a pseudo-
intersection.

Proof. Since A is countable, it has a cofinal descending subfamily {an : n < ω}. By induction,
construct b = {kn : n < ω} so each kn ∈

⋂
{am : m < n}.

Corollary 4. t > ω.
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Theorem 14. (CH) t = ω1.

Proof. List the infinite subsets of ω as {cα : α < ω1}. Construct the tower {aα : α < ω1} by
induction so each aα is a pseudo-intersection of {cβ : β < α} ∪ {aβ : β < α}.

Theorem 15. (MA) t = 2ω.

(to be proved later)

Theorem 16. Cons(t < 2ω)

(to be proved much later if we’re lucky)
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4 Martin’s axiom

Theorems 1, 9 and 16 were proved by induction. There is a technique equivalent induction on ω,
due to Rasiowa and Sikorski, which appears in the course of proving the Rasiowsa-Sikorski theorem
in Boolean algebra, so I will mis-call it the Rasiowa-Sikorski lemma:

Lemma 1. If P be a partial order, and D is a countable collection of dense subsets of P, then there
is G a filter on P so that ∀D ∈ D ∃g ∈ G∃p ∈ D g ≤ p. (We say that G is D-generic.)

To understand the statement of this lemma, we need some definitions.

Definition 8. Let P is a partial order.

(a) D ⊂ P is dense iff ∀p ∈ P∃q ∈ D q ≤ p.

(b) G ⊂ P is a filter iff ∀a ∈ [G]<ω ∃p ∈ G p ≤ q for all q ∈ a.

It is this lemma that generalizes into Martin’s axiom:

Definition 9. MA is the following statement: If P is a ccc partial order, and D is a collection of
dense subsets of P with |D| < 2ω, then there is G a filter on P so that ∀D ∈ D ∃g ∈ G∃p ∈ D g ≤ p.

We will define ccc later. For now, just note that in the presence of CH, MA is a weaker form of
the Rasiowa-Sikorski lemma, so CH ⇒ MA.

We prove the lemma, the then prove theorems 1, 9, and 16 using it.

Proof. (a) the Rasiowa-Sikorski lemma: given P,D as in the hypothesis, list D = {Dn : n < ω}.
By induction construct {gn : n < ω} where gn ∈ Dn and each gn ≥ gn+1.

Having proved the Rasiowa-Sikorski lemma in (a), we prove (b) a > ω, (c) b > ω, (d) t > ω.

(b) theorem 1 (for κ = ω): given A a countable almost disjoint family on ω, let P = {p =
(bp,Bp): bp is a finite subset of ω, Bp is a finite subset of A}. Define p ≤ q iff bp ⊃ bq and
∀A ∈ Bq (bp \ bq) ∩A = ∅, i.e., we extend the first coordinate, and what we add avoids everything
in the second.

For A ∈ A let DA = {p : A ∈ Bp}. DA is dense: fix p ∈ P. Let bq = bp.Bq = Bp ∪ {A}. Then
q ≤ p and q ∈ DA.

For n < ω let Dn = {p : |bp| > n}. Dn is dense: fix p ∈ P. Let k ∈ ω \ (n + 1 ∪
⋃
Bp) — we

know k exists because A is infinite, hence ω \ ∪
⋃
Bp is infinite.

Let D = {DA : A ∈ A} ∪ {Dn : n < ω}. D is countable. Let G be a D-generic filter. Let
B =

⋃
p∈G bp.

B is infinite: Fix n. Let p ∈ G ∩Dn. Then B ⊃ bp and bp \ n 6= ∅. Hence B \ n 6= ∅ for all n.

B ∩A =∗ ∅ for all A ∈ A: Fix A ∈ A. Let p ∈ G ∩DA, i.e., A ∈ Bp. Let k ∈ B. ∃q ∈ G k ∈ bq.
Since G is a filter, ∃r ∈ G r ≤ p, q. So k ∈ r and (br \ bp) ∩ A = ∅. Hence if k ∈ A then k ∈ bp,
which is finite.

(c) theorem 9: given F ∈ [ωω]≤ω, let P = {p = (σp.Hp) : σp is a finite function from ω to ω,
Hp is a finite subset of F}. Define p ≤ q iff σp ⊃ σq, Hp ⊃ Hq, and ∀f ∈ Hq if n ∈ dom σp \ σq
then σp(n) > f(n), i.e. we extend the first coordinate and eventually dominate everything in the
second.

For f ∈ F let Df = {p : f ∈ Hp}. Df is dense: fix p ∈ P. Let σq = σp, Hq = Hp ∪ {f}. Then
q ≤ p and q ∈ Df .
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For n < ω let Dn = {p : n ∈ dom σp}. Each Dn is dense: fix p ∈ P. Let Hq = Hp. For k ≤ n
with k /∈ dom σp, define σq(k) = 1 + Σf∈Hpf(k); if k ∈ dom σp, σq(k) = σp(k). Then q ≤ p and
q ∈ Dn.

Let D = {Df : f ∈ F} ∪ {Dn : n < ω}. D is countable. Let G be D-generic. Let g =
⋃
p∈G σp.

g ∈ ωω: fix k ∈ ω. ∃p ∈ G ∩Dk. So k ∈ dom σp ⊂ dom g.

g ≥∗ f for all f ∈ F : fix f ∈ F . Let p ∈ G ∩Df . Let k < ω. ∃q ∈ G ∩Dk, so σq(k) = g(k). Let
r ≤ q, p, r ∈ G. Then g(k) = sigmar(k) and if k /∈ dom σp then g(k) > f(k). So if g(k) ≤ f(k),
k ∈ dom σp which is finite.

(d) theorem 16: Let A be a countable filterbase in [ω]ω. Let P = {p = (ap, Cp) : ap ∈ [ω]<ω, Cp
is a finite subset of A}. Define p ≤ q iff ap ⊃ aq, Cp ⊃ Cq and for all A ∈ Cq ap \ aq ⊂ A, i.e., we
extend the first coordinate and eventually stay inside everything in the second.

Define DA = {p : A ∈ Cp}. DA is dense: fix p ∈ P. Let aq = ap, Cq = Cp ∪ {A}. q ≤ p and
q ∈ DA.

Define Dn = {p : sup ap > n}. Dn is dense: fix p ∈ P. Let k ∈
⋃
Cp \ n + 1. (We can do this

because A is a non-principal filterbase.) Let aq = ap ∪ {k}, Cq = Cp. q ≤ p and q ∈ Dn.

Let D = {DA : A ∈ A} ∪ {Dn : n < ω}. D is countable. Let G be a D-generic filter. Let
B =

⋃
p∈G ap.

B is infinite: fix n. Let p ∈ G ∩Dn. Then B ⊃ ap and ap \ n 6= ∅. Hence ∀n B \ n 6= ∅.
B ⊂∗ A for all A ∈ A: Fix A. Let p ∈ G ∩DA. Let k ∈ B. ∃q ∈ G k ∈ aq. Since G is a filter,

∃r ∈ G r ≤ p, q. Hence k ∈ ar and if k /∈ ap then k ∈ A. So B \A ⊂ ap, which is finite.

What (b), (c) and (d) have in common are: conditions in P are ordered pairs; the first coordinate
is a finite approximation of the final object; the second coordinate provides some kind of control,
i.e., we promise that from now on we will, respectively, (a) stay away from; (b) stay above; (c)
stay inside, elements in the second coordinate. Such second coordinates used to be called side
conditions, now they are called promises.

Recall:

Definition 10. MA is the following statement: If P is a ccc partial order, and D is a collection of
dense subsets of P with |D| < 2ω, then there is G a filter on P so that ∀D ∈ D ∃g ∈ G∃p ∈ D g ≤ p.

To understand the statement of MA we need

Definition 11. Let P be a partial order.

(a) p, q ∈ P are compatible iff there is r ∈ P with r ≤ p, r ≤ q.
(b) E ⊂ P is an antichain iff no two elements E of are compatible.

(c) P is ccc iff it has no uncountable antichains.

Theorem 17. (MA) (a) a = 2ω.

(b) b = 2ω.

(c) t = 2ω.

Proof. The proofs are straightforward generalizations of the Rasiowa-Sikorski technique and the
CH situation. First we prove that a family of size < 2ω cannot be, respectively, MAD, unbounded,

6



or without a pseudointersection. Hence a, b, c ≥ 2ω. Once we’ve done that, note that a, b, t ≤ 2ω.
Done.

We use the partial orders we used in the countable situation. It’s clear that the sets we want
to be dense are dense — that did not depend on the cardinalities of the underlying families A or
F . But it is not obvious that the respective partial orders are ccc. In each case, the reason will be
that conditions which share the same first coordinate are compatible. Here are the details.

(a) Let A be an almost disjoint family on ω,|A| < c, and P = {p = (bp,Bp): bp is a finite subset
of ω, Bp is a finite subset of A}; p ≤ q iff bp ⊃ bq and ∀A ∈ Bq (bp \ bq)∩A = ∅. As in the Rasiowa-
Sikorski lemma proofs, each DA, Dn is dense, so if G is a D-generic filter then B =

⋃
p∈G ap has

finite intersection with every A ∈ A. To show that G exists, we only have to show that P is ccc.

For a ∈ [ω]<ω, define Pa = {p : a = ap}. If p, q ∈ Pa then p, q are compatible (because
(a,Bp ∪ Bq) ≤ p, q). There are only countably many Pa’s, so an uncountable subset E of P must
have two (in fact uncountably many) elements in the same Pa, so E could not be an antichain.

(b) b = 2ω: Let F ⊂ ωω, |F | < c,P = {p = (σp.Hp) : σp is a finite function from ω to ω, Hp is a
finite subset of F}, p ≤ q iff σp ⊃ σq, Hp ⊃ Hq, and ∀n ∈ dom σp\ dom σq ∀f ∈ Hq σp(n) > f(n).
As in the Rasiowa-Sikorski lemma proofs, each Df , Dn is dense, so if G is a D-generic filter, then
g =

⋃
p∈G σp dominates F . To show that G exists, we only have to show that P is ccc.

For σ a finite function from ω to ω define Pσ = {p : σp = σ}. If p, q are in Pσ then p, q
are compatible (because (σ,Hp ∪ Hq) ≤ p, q). There are only countably many such Pσ’s, so an
uncountable subset E of P must have two (in fact uncountably many) elements in the same Pσ, so
E could not be an antichain.

(c) Suppose A is a filter basein [ω]ω, |A| < c, and P = {p = (ap, Cp) : ap ∈ [ω]<ω, Cp is a finite
subset of A}, and p ≤ q iff ap ⊃ aq, Cp ⊃ Cq and for all A ∈ Cq ap \ aq ⊂ A. As in the Rasiowa-
Sikorski lemma proofs, each DA, Dn is dense, so if G is a D-generic filter then B =

⋃
p∈G ap is a

pseudo-intersection of A. To show that G exists, we only have to show that P is ccc.

For a ∈ [ω]<ω, define Pa = {p : a = ap}. If p, q ∈ Pa then p, q are compatible (because
(a,Bp ∪ Bq) < p, q). There are only countably many Pa’s, so an uncountable subset E of P must
have two (in fact uncountably many) elements in the same Pa, so E could not be an antichain.

Note that the proofs of ccc do not depend on the size of the underlying sets A or F . We restrict
their size to restrict the number of dense sets we need to meet.

In the preceding proof, we showed that the partial order P was the countable union of families,
each of which was linked (i.e., any two elements are compatible). A partial order which is the
countable union of linked families is called σ-linked A sigma-linked family is necessarily ccc. So
too, a partial order which is σ-centered, i.e., the countable union of centered (= filter base) families,
is ccc. The orders in theorem 21 are easily seen to be σ-centered.

Theorem 18. (MA) Let A be almost disjoint, |A| < c,B ⊂6= A. Then there is B ⊂ ω B ∩A =∗ ∅
for all A ∈ B and B ∩A 6=∗ ∅ for all A ∈ A \ B.

Proof. The partial order is as in (a) above, except we require that Bp ⊂ B. Our dense sets are now:
for A ∈ B DA = {p : A ∈ Bp}, and for A ∈ A \B DA,n = {p : |ap ∩A| > n}.

Why is each DA,n dense? Fix p. A\
⋃
Bp is infinite. Let c ⊂ A\

⋃
Bp, |c| > n. Let q = (ap∪c,Bp).

Then q ≤ p and q ∈ DA,n.

Why is P ccc? As before,because P is σ-centered.
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This is an example of a common phenomenon in forcing: if you can’t stop something from
happening, it happens. E.g., by restricting each Bp ⊂ B, we can’t stop the final set from having
infinite intersection with each A ∈ A \ B.

Corollary 5. (MA) Let ω ≤ κ < c. Then 2κ = c.

Proof. Fix A almost disjoint, |A| = κ. Define f : P(ω)→ P(A) by f(B) = {A ∈ A : A ∩B =∗ ∅}.
By theorem 22, f is onto. So 2ω ≤ 2κ = |(P(B)| ≤ |(P(ω)| = 2ω.

Corollary 6. (MA) c is regular.

Proof. Let {aα : α < c} be a tower. Let κ = cf c, f : κ→ c be the cofinal increasing map witnessing
this. Then {af(α) : α < κ} is a tower. By theorem 21(c), κ = c.

In the first decade or two after MA was articulated, there was a lot of work on weaker variants,
e.g., MAσ−centered where we only guarantee a generic set for partial orders which are σ-centered.
Then the attention shifted to stronger variants. The main ones are PFA and MM. In some sense it
is premature to mention these — I will be very happy if at the end of the course you have even a
rough idea of what PFA means. But the main idea isn’t difficult: we find principles more general
than ccc, and guarantee generic sets for these partial orders.

Definition 12. (a) A partial order is proper iff ∀κ > ω it preserves stationary subsets of [κ]ω. (Here
“preserves” means “when you force with it”; and stationary means just what it usually means: meets
every closed unbounded set. The partial order is now [κ]ω instead of ω1)

(b) PFA (proper forcing axiom) is the following statement: If P is a proper partial order and D
is a family of dense subsets of size ω1 then there is a D-generic filter in P

(c) MM (Martin’s Maximum) is the following statement: If P is a partial order preserving
stationary subsets of ω1and D is a family of dense subsets of size ω1 then there is a D-generic filter
in P.

Both PFA and MM require large cardinals to prove their full consistency (but many results
using them can be proved without the large cardinal assumption, e.g., no S spaces). The logical
implications are: MM ⇒ PFA ⇒ MA. While MA is consistent with c being any uncountable
regular cardinal, PFA ⇒ 2ω = ω2. This is due to Velickovic, and uses the combinatorics developed
by Todorcevic of ladder systems and the trace function.

Theorem 19. (MA) If Z is a collection of measure zero subsets of R, and |Z| < c then µ(
⋃
Z) = 0.

Proof. It suffices to show that, for all ε > 0 there is u open with Z =
⋃
Z ⊂ u and µ(u) ≤ ε.

Let B be a countable base for the topology on R (e.g., intervals with rational endpoints), and
let U = { finite unions of elements of B. Fix ε > 0. Let Pε = {u : u an open subset of R}, under
the order u ≤ v iff u ⊃ v. For each Z ∈ Z let DZ = {u : Z ⊂ u}.

Pε has ccc, since U is countable.

Let Z ∈ Z. We prove that DZ is dense: Let u ∈ Pε. Define δ = ε− µ(u). There is v open with
Z ⊂ v, µ(v) < δ. Hence µ(u ∪ v) < ε. Hence u ∪ v ≤ u and u ∪ v ∈ DZ .

By MA, there is G a filterbase on P with G ∩DZ 6= ∅ for all Z ∈ Z. Let u =
⋃
G.⋃

Z ⊂ u: Fix Z ∈ Z. There is v ∈ G ∩DZ . Z ⊂ v ⊂ u.

µ(u) ≤ ε: If not, there is a finite set v0, ...vn ∈ G with µ(v0 ∪ ...∪ vn) > ε. But G is a filterbase,
so ∃v ∈ Pε ∀i ≤ n v ≤ vi, i.e., v ⊃ vi for all i ≤ n. Hence µ(v0 ∪ ... ∪ vn) ≤ µ(v) < ε.
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Recall that a Suslin tree is a tree with height ω1, no uncountable branches, and no uncountable
antichains (in a tree, an antichain is a pairwise incomparable set).

Lemma 2. If there is a Suslin tree, there is one in which every element has successors of arbitrary
height.

Proof. Let S be a Suslin tree, where ht t is defined as the order type of {s : s < t}. Let E = {s : ∃αs
if t ≥ s then ht t < αs}.

Suppose {αs : s ∈ E} is countable. Then E is countable, and S \ E is the desired tree.

Suppose {αs : s ∈ E} is uncountable. Then we can construct a sequence {sβ : β < ω1} ⊂ E
where each ht sβ > sup{αsγ : γ < β}. Hence, if γ < β then sγ and sβ are incomparable. But then
{sβ : β < ω1} is an antichain.

Theorem 20. (MA + ¬ CH) There are no Suslin trees.

Proof. Suppose S is a Suslin tree. We may assume that every element has successors of arbitrary
height. Then it is a ccc partial order under the reverse ordering (i.e., s ≤ t iff s is above t in the
tree order). Let Dα = {s : ht s ≥ α}. Each Dα is dense, by hypothesis on S. So there is a filter
G meeting each of them. But then G is an uncountable chain, hence generates an uncountable
branch, a contradiction.

Theorem 21. (MA + ¬ CH) (a) If X is ccc and U is a family of uncountably many open subsets
of X, then U contains an uncountable filterbase.

(b) If X and Y are ccc spaces, then so is X × Y

Recall: a topological space is ccc iff it has no uncountable family of pairwise disjoint open sets.

Proof. (a) Let U be a family of uncountably many open subsets of the ccc space X. We may assume
U = {uα : α < ω1}. Let P = {U : U a finite subset of U , {v ∈ U : v ∩

⋂
U 6= ∅} is uncountable}.

P 6= ∅: Otherwise every element of U would meet only countably many elements of U , and we
could easily construct an uncountable pairwise disjoint subfamily of U , contradicting ccc.

If U ∈ P then {v ∈ U : U ∪{v} ∈ U}: otherwise we could construct a pairwise disjoint subfamily
of {

⋂
U ∩ v : v ∩

⋂
U 6= ∅}, contradicting ccc.

Let Dα = {U ∈ P : ∃β ≥ α uβ ∈ U}. By the paragraph above, Dα is dense for all α.

Let G be a {Dα : α < ω1}-generic filter in P. Then
⋃
G is a filterbase,

⋃
G ⊂ U .

(b) Recall that if w is an open subset of X × Y then there is u open in X, v open in Y with
u× v ⊂ w. Let X,Y be ccc. Suppose we have W a pairwise disjoint open family on X × Y , with
W uncountable. For w ∈ W, let uw × vw ⊂ w, where uw, vw are open in X,Y respectively.

By (a) we may assume that {uw : w ∈ W} forms a filterbase. Since w 6= w′ ⇒ w ∩w′ = ∅, {vw :
w ∈ W} must be pairwise disjoint. Which contradicts Y being ccc.

Remark: Most of these results are due to Solovay or Martin or both; some work of Tennebaum.

Remark: Galvin proved that CH ⇒ ∃X ccc with X2 not ccc.
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5 A quick introduction to forcing

Suppose we have a set of reals A ⊂ 2ω and we want to add a new real x /∈ A. Here is a simple
partial order to do it: P =

⋃
k<ω

kω; ≤ = ⊃. (P is called the Cohen partial order.) For a ∈ A
let Da = {p : ∃n p(n) 6= a(n)}. Da is dense. For n < ω, let Dn = {p : n ∈ dom p}. So if G is a
{Da : a ∈ A} ∪ {Dn : n < ω}-generic filter, then

⋃
G ∈ 2ω \A.

In fact we can do more. Pick any κ and we can add κ reals not in A: Q = κ × P. (Q is the
forcing adding κ many Cohen reals). For a ∈ A,α < κ define Da,α = {p : ∃n p(α, n) 6= a(n)}. Each
Da,α is dense. For n < ω, α < κ define Dn,α = {p : n ∈ dom p}. Letting G be a {Da,α : a ∈ A,α <
κ} ∪ {Dn,α : n < ω, α < κ}-generic filter, and bα =

⋃
G|{α}×ω, each bα 6= a for all a ∈ A.

If A = 2ω∩M for some model of set theory, we’ve just added one, or even possibly κ, many reals
to M , and we can form a new model in a fashion analogous to adding

√
2 to the set of rationals.

But some questions arise.

1. How do we know G exists? If M is countable, we can and will invoke Rasiowa-Sikorski.
Aside: If M is countable transitive — and the theory will require it to be transitive — then our κ
is really an ordinal that M thinks is a cardinal, which is not a problem as far as consistency proofs
go, but you should be aware of it.

2. If we are adding, say, ωM1 many reals, how do we know that in the new model ω1 doesn’t
suddenly become countable? This is a serious question, and the issue of collapsing cardinals is an
important one.

3. What other properties does the model have? For example, if M |= CH then there is a MAD
A ∈M so that no matter how many Cohen reals you add, A remains MAD in the new model. For
another example, if you add a single Cohen real to any model of set theory, you automatically add
S and L spaces and ccc spaces whose squares are not ccc. How can you understand the new models
well enough to prove theorems like these?

The technicalities of forcing are designed to help us with issues such as #2 and #3. There are
two approaches: forcing over countable models, and Boolean-valued models. The latter approach
is easier to prove theorems about and justifies issue #1 without recourse to countable transitive
models; the former approach is, for most people, more intuitive. We will prove things carefully using
Boolean valued models, and then feel free to refer to adding generic sets to countable transitive
models.
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6 Partial orders and complete Boolean algebras

Recall that a Boolean algebra has a meet + (think of ∪), a join · (think of ∩) and a relative
complement − (think of \), a 0 (think of ∅) and a 1 (think of X when our algebra is P(X))
satisfying the axioms that ∪,∩, \, ∅ and X satisfy. E.g., one of De Morgan’s laws reads: a−(b ·c) =
(a− b) + (a− c). Note that − is relative: −a is an abbreviation for 1− a.

Every Boolean algebra has an induced partial order ≤ (think of ⊂): b ≤ c iff b− c = 0.

A complete Boolean algebra is a Boolean algebra closed under arbitrary (not just finite) sums.
For example, P(X) is a complete Boolean algebra (here X corresponds to 1) because if A ⊂ P(X)
then

⋃
A = ΣA∈AA ⊂ P (X). For another example, the Boolean algebra FinCof(ω) = {a ⊂ ω : a

finite or ω − a finite} is not complete, since, e.g., Σn<ω{2n} = {2n : n < ω} /∈ FinCof(ω).

First we define: A ⊂ P is pre-dense iff ∀p ∈ P∃q ∈ A p, q are compatible. Some examples: a
dense set is pre-dense; a maximal antichain is pre-dense.

We write p⊥q if p, q are incompatible.

If P has a minimum element 0, then no two elements of P are incompatible and every maximal
filter in P has 0 as an element, so P is not very interesting in the context of forcing. A particular
class of partial orders with no minimum elements is the class of separative partial orders.

Definition 13. Let P be a partial order. We say P is separative iff ∀p∀r 6= p∃q either q ≤ p and
q⊥r; or q ≤ r and q⊥p

Note: if P is separative, then ∀p∃q, r q, r ≤ p and q⊥r.
For any separative P and p ∈ P, the following is a useful dense set: Dp = {q : q ≤ p or q⊥p.

Note that a filter meeting every Dp is necessarily maximal (since in B it is a filterbase in which,
∀p ∈ P, either p ∈ G or −p ∈ G).

Theorem 22. Let P be a separative. Then there is a complete Boolean algebra B so that (a) P is
dense in B \ 0 and (b) if A is pre-dense in P, then, in B, ΣA = 1.

Proof. Fix P a partial order without a minimum element. Let A ⊂ P, p ∈ P. We define p⊥A iff
∀q ∈ A p⊥q.

For A ⊂ P define ΣA = {p : ∀q ≤ p ¬(q⊥A)}, 1 = P = ΣP, 0 = ∅ = Σ∅. Note that ΣA = ΣB 6⇒
A = B. For example, if A,B are pre-dense, then ΣA = ΣB = 1.

Let B = {ΣA : A ⊂ P}.
We define the Boolean operations: ΣA + ΣB = Σ(A ∪ B). −ΣA = {p : p⊥A} = Σ{p : p⊥A}.

Necessarily, ΣA · ΣB = 1− (−ΣA+−ΣB).

You can check this is a Boolean algebra. Clearly it is complete.

We embed P in B as follows: e(p) = Σ{p} = {q : q ≤ p}.
If (a) holds, then so does (b). To show (a) it suffices to show: ∀p 6= q ∈ P either p − q 6= 0 or

q − p 6= 0. By separativity, if p 6= q then either ∃r ≤ p, r⊥q (so 0 6= r ≤ p − q) or (ii) ∃r ≤ q, r⊥p
(so 0 6= r ≤ q − p).

We call B the completion of P. We will write p instead of Σ{p}.

11



An example: Let P be the upside-down binary tree of height ω =
⋃
k<ω(k2). Let b be a

branch. Πb = 0. Let A be a maximal antichain. ΣA = 1. Let σ : 3 → 2, each σ(i) = 1. Let
τ ⊃ σ, τ : 5→ 2, τ(3) = τ(4) = 0. Then σ − τ = {ρ : ρ ⊃ σ and ρ(3) = 1 or ρ(4) = 1}.

Fact 1. Let B be the completion of P.

(a) D is dense in B iff ΣD = 1.

(b) Let D be dense in P. Then D is dense in B.

Definition 14. Let M be a transitive model of set theory, P a partial order, P ∈ M . We say the
filter G is P-generic over M iff G ∩D 6= ∅ for all dense subsets D of P with D ∈M .

Logical fine-point: For D ∈M , D is a dense subset of P iff M |= D is a dense subset of P.

Recall that in a transitive model M , if x ∈M then x ⊂M .

Fact 2. Let M be a countable transitive model of set theory, P separative, P ∈ M , and let G be
P-generic over M . Then G /∈M .

Proof. If a filter G ∈M meets every Dp then, by separativity, D = {p ∈ P : ∃q ∈ G q⊥p} is dense
in P. So G ∩D = ∅. If G ∈M , then D ∈M , so either G is not P-generic over M or G /∈M .

12



7 Names

We begin with a model M , add a generic filter G to it, and want to be able to talk about the
objects in the new model M [G], that is, we want to name them.

Of course our names cannot be too precise, since if we knew exactly what the new elements
were, they would not be new.

So an alternative way of looking at things is to start with a model M and look at all the names
for elements in some potential M [G]. These names do not rely on knowing exactly what G is.
This construction of ambiguous names is called a Boolean-valued model. Then we can mod out by
any G and get a 2-valued (i.e., standard) model. When we construct the Boolean-valued model,
since we don’t care whether or not a generic filter G actually exists, we can assume that M is the
universe V — why not?

Definition 15. Let P be a partial order. A P-name ẋ is a set of ordered pairs with the property
that every pair in ẋ has the form (p, ẏ) where ẏ is either a name or ẏ = ∅. (When the context is
clear, we just call these names.)

Remark: This is implicitly an inductive definition. Let’s work out some details.

∅̇ = ∅.
For n ∈ ω ṅ = {(p, k̇) : k < n, p ∈ P}.
And ω̇ = {(p, ṅ) : n < ω, p ∈ P}.
In general, if x ∈ V ẋ = {(p, ẏ) : y ∈ x, p ∈ P}.
Convention: if x ∈ V we write x̌ instead of ẋ.

Given a name ẋ, the object ẋ names in the model V [G]is called ẋ/G, defined by: ẋ/G = {ẏ/G :
(p, ẏ) ∈ ẋ and p ∈ G}. I.e., we take exactly the elements that G tells us to.

By induction, x̌/G = x for all x ∈ V .

So much for naming elements in the ground model. What about ẋ when x /∈ V ?

We need a name for our generic filter: Ġ = {(p, p) : p ∈ P}. That is, each p thinks “I am in G!”.
Let’s check that G = Ġ/G: p ∈ Ġ/G iff ∃q ∈ G(q, p) ∈ Ġ iff (p, p) ∈ Ġ and p ∈ G iff p/G ∈ G iff
p ∈ G.

Consider the Cohen partial order P =
⋃
k<ω(k2). Recall that if G is P-generic, we define the

Cohen real fG =
⋃
G. What is its name? ḟĠ = {(p, (n, i)) : n ∈ dom p and p(n) = i}. Let’s check

that ḟĠ/G = fG: fG(n) = i iff ∃p ∈ G p(n) = i iff ∃p ∈ G (p, (n, i)) ∈ ḟĠ iff (n, i) ∈ ḟĠ/G iff
ḟĠ/G(n) = i.

The temptation is to say that the objects in our forcing universe are all the names. But there
are problems with this.

Note that even if a name names an object in the ground model (V or M) we might not know
which one. For example, let p + q = 1, p · q = 0, i.e., p, q are incompatible and {p, q} is pre-
dense. Let ẋ = {(p, 2̌n) : n < ω} ∪ {(q, ˇ2n+ 1 : n < ω}. If p ∈ G, ẋ/G = {even numbers}; if
q ∈ G, ẋ/G = {odd numbers}. So names are highly ambiguous even when they don’t have to be
(because they are naming something in the ground model).

Another problem with saying that the objects in our forcing universe are all the names, is not
only their ambiguity (see the preceding example), but that different names can name the same
object.

13



Here is an example: Let (Ġ)∗ = {(p, q̌) : q ≥ p}. The subclaim is that if G is a generic filter,
then G = (Ġ)∗/G: q ∈ (Ġ)∗/G iff ∃p ∈ G (p, q̌) ∈ (Ġ)∗ iff ∃p ∈ G q ≥ p iff q ∈ G. But clearly
Ġ 6= (Ġ)∗.

In order to avoid at least part of the problem of more than one name for a given object, we
move to names which are, in some sense, maximal.

Definition 16. (a) Let ẋ, ẏ be P-names. Jẏ ∈ ẋK = Σ{p : (p, ẏ) ∈ ẋ}.
(b) If ẋ is a P-name, then ẋf = {(q, ẏf ) : q ≤ Jẏ ∈ ẋK}.
(c) A P-name ẋ is full iff ẋ = ẋf .

(b) looks circular, but it is not. It is, instead, implicitly inductive. Note: This is not Kunen’s
use of the phrase “full name.”

The names we defined before definition 16 are not full. It is left to the reader to turn them into
full names.

If we are working in the completion B of P, just substitute B for P above. As noted below, it
doesn’t matter.

Note that a full P-name is not full in B, where B is the completion of P. As we will learn when
we define forcing, going to the full B name doesn’t really add anything, so we will use whichever
name is more convenient.

Fact 3. (a) For all generic filters G, ẋ/G = (ẋ)f/G,

(b) (ẋ)f = (ẏ)f iff ∀G a generic filter ẋ/G = ẏ/G.

A word about the limitations of fact 3. Recall the name ẋ = {p}×{2̌n : n < ω}∪{q}×{ ˇ2n+ 1 :
n < ω}, where p⊥q and p+ q = 1. Note that if Ě is the name for the set of even numbers, and Ǒ is
the name for the set of odd numbers, then for every G generic, either ẋ/G = Ě/G or ẋ/G = Ǒ/G.
But it is not true that ∀G generic ẋ/G = Ě/G, and it is not true that ∀G generic ẋ/G = Ǒ/G.

Exercise: Let Ġ = {(p, p) : p ∈ P}. What is Ġf? Let ḟĠ be the name for
⋃
Ġ where P =⋃

k<ω(k2) defined above. What is (ḟĠ)f?

From now on we will not worry unduly about which name we use, or whether we are in P or
its completion. As long as (ẋ)f = (ẏ)f we will use ẋ, ẏ interchangeably and may even refer to the
name for an object, knowing full well there isn’t a single one.

We are now ready to define the various universes we will talk about:

Definition 17. Let P be a separative partial order.

(a) V P = {ẋf : ẋ a P-name}.
(b) If B is the completion of P, then V B = {ẋf : ẋ a B-name}.
(c) If M is a model and P ∈ M we define MP = {ẋf : ẋ a P-name in M},MB = {ẋf : ẋ a

B-name in M}.
(d) If G is P-generic over M a model, M [G] = {ẋ/G : ẋ ∈MP}.

The following fact is an immediate consequence from P dense in its completion.

Fact 4. If B is the completion of P and G is P-generic over M a model, M [G] == {ẋ/G : ẋ ∈MB}.

Example: Let p : 3→ 2, p(0) = p(1) = 1; p(2) = 0. Then if p ∈ G, ḟĠ/G(0) = ḟĠ/G(1); ḟĠ/G(2) =
0.
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8 Forcing

The previous exercise gives us an idea of what forcing is about: certain conditions p ∈ P know
something about the generic object. Other conditions know something else. We need to define
what we mean by “know something about.”

Definition 18. Let P be a partial order, p ∈ P.

(a) If ẋ, ẏ are P-names, p 
 ẏ ∈ ẋ iff p ≤ Jẏ ∈ ẋK. (
 is pronounced: “forces.”)

(b) If ϕ, θ are formulas, p 
 ϕ ∧ θ iff p 
 ϕ and p 
 θ.

(c) If ϕ is a formula, p 
 ¬ϕ iff p · Σ{q : q 
 ϕ} = 0.

(d) If ϕ(v) is a formula with free variable v, p 
 ∃vϕ(v) iff ∃ẋ a P-name p 
 ϕ(ẋ).

Definition 19. Let ϕ be a formula. JϕK = Σ{p : p 
 ϕ}. (JϕK is called the Boolean value of ϕ).

Note that we earlier defined Jẏ ∈ ẋK.
Exercise: Let P =

⋃
k<ω(k2). Let ḟĠ be the name for

⋃
Ġ, where Ġ names the generic filter.

What is JḟĠ(5) = 0K? What is JḟĠ(5) 6= 0K? Fix g ∈ M ∩ 2ω. What is J∃ň ḟĠ(ň) = ǧ(ň)K? What
is J¬∃ň ḟĠ(ň) = ǧ(ň)K?

We write MP 
 ϕ iff JϕK = 1. (Sometimes MP 
 ϕ is written as 1 
 ϕ, sometimes as 
P ϕ.)

Fact 5. (a) MP 
 ϕ iff ∀G generic M [G] |= ϕ.

(b) MP 
 ϕ iff ∃D dense in P ∀p ∈ D p 
 ϕ.

Proof. (a) 1 ∈ G for all filters G.

(b) D is pre-dense iff ΣD = 1; every pre-dense set extends to a dense set by closing downward.

This simple fact is extremely powerful. Since D dense in P ⇒ D dense in the completion of P,
and D dense in the completion of P iff D ∩ P is dense in P, this fact, like fact 4, allows us to move
back and forth between P and its completion.

It also gives us our main tool for deciding when a statement is forced in V P. Here is an example:

Fact 6. Let M be a transitive model of set theory. Let ḟĠ be the name for
⋃
Ġ where G is⋃

k<ω(k2)-generic. Then ∀g ∈ M ∩ 2ω MP 
 {ň : ḟĠ(ň) = ǧ(n)} is infinite. (Note that, since
ḟġ /∈M , necessarily {ň : ḟĠ(ň) 6= ǧ(n)} is infinite.)

Proof. By fact 5, we just need to find the right dense set.

Given ǧ, let Dn = {p : ∃m ≥ n p(m) = g(m)}. Each Dn is easily seen to be dense. Hence
for all n < ω, MP 
 ∃m ≥ nḟĠ(ň) = ǧ(ň). Hence ∀n < ω MP 
 ∃m ≥ nḟĠ(ň) = ǧ(ň). I.e.,
MP 
 {ň : ḟĠ(ň) = ǧ(n)} is infinite.

Note: In some sense this is a silly example: If {n : g(n) 6= f(n)} is co-finite, then f ∈ M for
any model with g ∈M . But f /∈M . However this proof is an example of an important technique,
which you will use in a moment.

From now on, we will simply write x instead of x̌, for all x ∈ V .
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In the next few examples, we let P =
⋃
k<ω(kω), let Ġ name the P-generic filter, and let ḟĠ

name
⋃
Ġ.

1. Show that ∀g ∈M ∩ ωω MP 
 {n : g(n) = ḟĠ(n)} is infinite.

2. Show that ∀g ∈M ∩ ωω MP 
 {n : g(n) < ḟĠ(n)} is infinite.

3. Show that ∀g ∈M ∩ ωω if ∃∞n g(n) 6= 0 then MP 
 {n : g(n) > ḟĠ(n)} is infinite.

4. Show that ∀n < ω MP 
 ∃∞k ḟĠ(k) = n.

As a corollary to exercise 2 we have: in M ∩ωω is not cofinal in MP ∩ ω̇ω, where P =
⋃
k<ω(kω).

Theorem 23. Let P be a separative partial order.

(a) V P 
 ZFC.

(b) If P ∈M a transitive model of ZFC and G is a P-generic filter over M , M [G] |= ZFC

Proof. By fact 5 (a) we just have to prove (a); by fact 5(b) we just need to find the right dense sets.
Most of the proof is fairly tedious and best left to the reader — if you work through the details
you will have a very good understanding of how forcing works. So we just provide a few samples.

Most of the axioms are existence axioms: power sets exist; an infinite set exists; unions exist;
pairs exist; subsets defined by a formula exist; ranges of functions defined by a formula exist; choice
functions exist. To show something exists, all we need to do is find a name for it.

Union axiom Let ẋ ∈ V P. Define ż = {(p, ẇ) : ∃ẏ p 
 ẇ ∈ ẏ ∈ ẋ}. It is left to the reader to
prove that V P 
 ∀ẇ (ẇ ∈ ż iff ∃ẏ ẇ ∈ ẏ ∈ ẋ).

Axiom of choice It’s easier to prove the well-ordering principle, which is equivalent since all of
the other axioms hold in V P. So let ẋ ∈ V P. Let Y = {ẏ : ∃p (p, ẏ) ∈ ẋ}. Since V |= WO,∃κ
a cardinal and f : κ → Y, f 1-1, onto. Define ḣ = {(p, (α, ẏ)) : p 
 ẏ ∈ ẋ and f(α) = ẏ}. Then
V P 
 ḣ is a partial function from κ to ẋ. But every partial function from an ordinal induces a
well-ordering of the range, so V P 
 ẋ has a well-ordering.

Technical point: The function ḣ need not be 1-1: there may be p, ẏ, ẏ′ with p 
 ẏ = ẏ′ ∈ ẋ. But
this doesn’t matter. The theorem that every partial function from an ordinal induces a well-ordering
of the range does not require that the partial function is 1-1.

The two non-existence axioms are extensionality and regularity. Extensionality is left to the
reader. Regularity follows from the inductive definition of names. Define the complexity c(ẋ) =
sup{c(ẏ) : ∃p p 
 ẏ ∈ ẋ}, where c(∅̌) = 0. For any ẋ, we need to find a term ẇ so V P 
 ẇ ∩ ẋ = ∅.

Fix ẋ and define D = {p : ∃ẏ p 
 ẏ ∈ ẋ so that if ż ∈ ẋ then c(ż) ≥ c(ẏ). D is dense (proof
left to the reader). If p ∈ D there is ẏp with p 
 ẏp ∈ ẋ and p 
 if ż ∈ ẋ then c(ż) ≥ c(ẏp). By
the induction definition of names, p 
 ẏp ∩ ẋ = ∅. Let A be a maximal antichain in D. Define
ẇ = {(q, ż) : ∃p ∈ A, q ≤ p, q 
 ż ∈ ẏp}. V P 
 |A ∩ Ġ| = 1. Let p ∈ A ∩ Ġ. p 
 (ẏp ∩ ẋ = ∅ and
ẇ = ẏp). Since A is pre-dense, V P 
 ẇ ∩ ẋ = ∅.

Theorem 29 is what makes everything work: We want to prove that ZFC + ϕ is consistent. So
we force with some P with V P 
 ϕ. Since V P 
 ZFC, we’re done.

A quick summary: V P is the set of full P-names, so V P ⊂ V . But not everything that V P names
is in V . For example, Ġ names an object which is necessarily not in V . The name is in V , but
the object named is not. The object named doesn’t even exist until we know exactly what G is.
But even though we don’t know exactly what it is, we can know a lot about it, e.g., we know a lot
about a Cohen real (see the exercises above).
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Comment on notation: If we say Y = {ẋ : ϕ(ẋ)} then Y is a set of names, but is not itself a
name. If we say ẋ ⊂ ω we mean that Jẋ ⊂ ωK = 1; the name ẋ is not a subset of ω; it is a subset
of P× V .

Another convention is the phrase “In V P, ϕ used instead of V P 
 ϕ.
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9 Preserving and collapsing cardinals

Suppose M is a transitive model, M |= κ a cardinal.2 Since M is transitive, we know that in any
MP κ will still be an ordinal. But could we have added a function from some smaller ordinal α
onto κ? In this case, MP 
 κ is not a cardinal.

Here is an example:

Definition 20. The standard forcing Col(κ, λ) collapsing κ to λ < κ is defined as follows: Col(κ, λ) =⋃
α<λ

ακ. The order is: p ≤ q iff p ⊃ q.

Fact 7. Let P = Col(κ, λ). Then V P 
 ∃ḟ : λ→ κ, ḟ onto. (Hence V P 
 |κ| = |λ|.)

Proof. For β < κ define Dβ = {p ∈ P : β ∈ range p}. Dβ is dense for all β < κ. For α < λ define
Dα = {p ∈ P : α ∈ dom p}. Each Dα is dense. So if ḟ =

⋃
Ġ, where Ġ is P-generic, then dom

ḟ = λ and range ḟ = κ.

There are times when we want to collapse cardinals, but usually we don’t.

Definition 21. P has κ-cc iff it has no antichain of size κ.

We write ccc instead of ω1-cc.

Note that if κ < λ then κ-cc ⇒ λ-cc.

Fact 8. Suppose κ is regular and P has κ-cc. Suppose ḟ is a P-name for a function where range
ḟ ⊂ V . Then ∀ẏ |{x : Jḟ(ẏ) = xK 6= 0}| < κ.

In particular, if range ḟ ⊂ ON , the hypothesis holds.

Proof. Fix ẏ. ∀x ∈ V let bx = Σ{p : p 
 ḟ(ẏ) = x} = Jḟ(ẏ) = xK. If x 6= z then bx · bz = 0, so
{bx : bx 6= 0} is an antichain, hence has size < κ. Hence |{x : bx 6= 0}| < κ, as desired.

Corollary 7. If κ is regular and P has κ-cc, then V P 
 κ is a cardinal.

Proof. Suppose ḟ : λ→ κ where λ < κ. For α < λ let Aα = {β : Jḟ(α) = βK 6= 0}. Then |Aα| < κ,
hence |

⋃
α<λAα| < κ and κ \

⋃
α<λAα 6= ∅. But V P 
 range ḟ ⊂

⋃
α<λAα, so V P 
 ḟ not onto.

Definition 22. We say that P is κ-closed iff all descending chains of non-zero elements {pα : α <
β}, where β < κ, have a non-zero lower bound.

We write countably closed for ω1-closed.

If ḟ names a function with range ⊂ V , we write p ‖ ḟ(ẋ) iff ∃y p 
 f(ẋ) = y.

Fact 9. If P is κ-closed, and ḟ : λ→ V where λ < κ then V P 
 ∃g ∈ V ḟ = g.
2if M is countable and M |= κ > ω then κ is not a cardinal in V . But we don’t care — we are looking through

M ’s eyes.
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Proof. Suppose λ ≤ κ and ḟ is a name for a function from λ to V .

Let D = {p : p 
 ∃g ∈ V ḟ = g}.
Fix p, and let {pα : α < λ} be a descending chain of non-zero elements below p so pα ‖ ḟ(α)

— we can do this because P is κ-closed. Let q be a non-zero lower bound for {pα : α < ρ}. Let
g(α) = β iff pα 
 ḟ(α) = β. Then p 
 ḟ = g. So D is dense and we are done.

As a corollary

Fact 10. If P is κ-closed, then no cardinal ≤ κ is collapsed in V P.

Proof. Suppose λ < ρ ≤ κ, V |= λ, ρ, κ are cardinals. V P 
 if ḟ : λ→ κ, then there is g ∈ V ḟ = g.
But no ground model function can take λ onto ρ, so ρ is not collapsed.
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10 ¬ CH at last, and more

Here we show how to prove the consistency of λ = κ for any κ with cf κ > λ.

First we focus on λ = ω, κ > ω1, i.e., destroying CH.

Definition 23. The Cohen partial order on κ is Cκ = {p : p a partial function from κ to 2, dom
p finite}.

Fact 11. For all κ Cκ is ccc.

Proof. Let P ∈ [Cκ]ω1 . By the ∆-system lemma we may assume {dom p : p ∈ P} is a ∆-system
with root r. Since r is finite and there are only finitely many functions from r to 2, we may assume
there is q : r → 2 so that if p ∈ P then p ≤ q. Hence {p \ q : p ∈ P} has pairwise disjoint domain,
so P is linked (in fact, centered).

Thus, forcing with Cκ does not collapse cardinals.

Theorem 24. Assume GCH. V Cκ 
 c = κ.

Proof. For each δ a limit ordinal, let Eδ = {δ + n : n < ω}. Let Ġ name the Cκ-generic filter
over V , and ḟ name

⋃
Ġ. Let ġδ : ω → 2, ġδ(n) = ḟ(δ + n). We need to show that V c 
 the ġδ’s

are distinct, (hence c ≥ κ), and that there are at most κ many Cκ-names for subsets of ω (hence
V Cκ 
 c ≤ κ).

Fix δ 6= δ′. Let D = {p : ∃n p(δ + n) 6= p(δ′ + n)}. We show that D is dense. Fix q ∈ Cκ.
Since dom q is finite, there is n with δ + n, δ′ + n /∈ dom q. Define p as follows: dom p = dom
q∪{δ+n, δ′+n}, p ⊃ q, p(δn) = 0, p(δ′+n) = 1. Then p ≤ q and p 
 gδ(n) 6= gδ′(n). So V c 
 c ≤ κ.

Since |Cκ| = κ, Cκ is ccc, GCH holds, and cf κ > ω, there are at most κ many maximal
antichains. And since there are at most κ many maximal antichains in Cκ, there are at most κ
many sequences of antichains {An : n < ω}. Fix k̇ a Cκ-name for a function from ω to 2. Let
Ak̇,n be a maximal antichain deciding k̇(n), i.e. if p ∈ Ak̇,n then p ‖ k̇(n). Let k̇∗ = {(q, (n, i)) :
∃p∃n q ≤ p ∈ Ak̇,np 
 k̇(n) = i}. Then k̇f = (k̇∗)f . So k̇ is determined by a countable sequence of
antichains, and there are only κ many of these.

The reader will note that we did not need full GCH. The pieces of GCH we used were: if λ < κ
then [λ]ω < κ (to limit the number of names) and (to name the obvious) [ω]<ω = ω (to use the
∆-system lemma and show Cκ is ccc).

We now generalize this construction.

Definition 24. Let ρ be a cardinal. Fn(A,B, ρ) = {f : dom f ∈ [A]<ρ, range f ⊂ B}; ≤=⊃.

Remark: Cκ from definition 23 is Fn(κ, 2, ω).

Fact 12. Let ρ be a regular cardinal, |B| ≤ ρ.

(a) if [ρ]<ρ ≤ ρ, then Fn(A,B, ρ) has the ρ+-cc.

(b) Fn(A,B, ρ) is ρ-closed.
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Proof. (b) is immediate from the definition. (a) follows from the ∆-system lemma: our hypothesis
implies that if λ < ρ+ then [λ]<ρ < ρ+, which is the hypothesis needed for the ∆-system lemma. So
given P ∈ [Fn(A,B, ρ)]ρ

+
, there is P ′ ∈ [P ]ρ

+
with {dom p : p ∈ P ′} a ∆-system with root r. Since

|r| < ρ, |B|r|| ≤ ρ, so there is P ∗ ∈ [P ′]ρ
+

and q with p|r = q for all p ∈ P ∗. Then {p\ q : p ∈ P ∗} is
pairwise compatible (because its domains are pairwise disjoint). Hence P ∗ is pairwise compatible,
and P was not an antichain.

Fact 13. Let ρ be a regular cardinal, |B| ≤ ρ. If GCH holds below ρ,3 then Fin(A,B, ρ) does not
collapse cardinals

Proof. ρ regular and GCH below ρ imply that ρ<ρ = ρ, so by fact 12(a), no cardinals above ρ+ are
collapsed. By fact 12(b), no cardinals below ρ are collapsed.

Theorem 25. Assume GCH. Let cf κ > λ. Let P = Fn(κ, 2, λ). Then V P 
 |2λ| = κ.

To understand what this theorem means, let P be as in the theorem. By fact 11, for all ordinals
ρ, V |= ρ a cardinal iff V P 
 ρ a cardinal. So if, for example, κ = ω2 and λ = ω, then V P 
 2ω = ω2.
If κ = ω17 and λ = ω3, then V P 
 2ω3 = ω17. If κ = ℵω3 and λ = ω2, then V P 
 2ω2 = ℵω3 .

Later we will state (and hopefully prove) a theorem using iterated forcing which simultaneously
changes the size of power sets. But for now we settle for doing one at a time. The proof closely
follows the proof of theorem 31.

Proof. Let κ be partitioned into {Eα : α < κ} where each |Eα| = λ, and let hα : λ → Eα be 1-1
onto. Let Ġ name the generic filter, and let ḟ name

⋃
Ġ. Define ġα = ḟ |Eα ◦ hα : λ→ 2.

First we show that V P 
 ∀α 6= β ġα 6= ġβ (hence V P 
 2λ ≥ κ). Pick α 6= β. Let D = {p : dom
p ∩ Eα 6= ∅ 6= dom p ∩ Eβ and ∃γ < λ p(hα(γ)) 6= p(hβ(γ))}.

We subclaim that D is dense: Fix p ∈ P. Since |dom p| < λ there is γ with hα(γ), hβ(γ) /∈ dom
p. Let dom q = dom p ∪ {hα(γ), hβ(γ)}, q ⊃ p, q(hα(γ)) = 0, q(hβ(γ)) = 1. Then q ∈ D.

But if q ∈ D then q 
 ġα 6= ġβ, as desired.

Why does V P 
 2λ ≤ κ? Let ġ be a name for a function from λ into 2. For all α < λ there is a
maximal antichain Aα deciding ġ(α). By λ+-cc, |Aα| ≤ λ. Let ġ′ = {(p, (α, i)) : p ∈ Aα, p(α) = i.
Since ġf = ġ′f , it suffices to ask: how many conditions are there of the form ġ′? By GCH, there are
κ many antichains. ġ′ is essentially determined by picking λ many maximal antichains. By GCH
and cf κ > λ, κλ = κ. So there are at most κ names for elements of 2λ. Hence V P 
 2λ ≤ κ.

3i.e., if λ < ρ then 2λ < ρ
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11 Some other forcings and technical results

Before moving on to iterated forcing, we introduce the measure algebra and the Sacks algebra and
some technical matters.

Definition 25. A partial order P is ωω-bounding iff ∀ḟ : ω → ω ∃g ∈ V ḟ < g4

Fact 14. . Assume CH. If P is ωω-bounding, then V P 
 d = ω1.

Thus an ωω-bounding partial order which adds > ω1 reals over a model of CH shows Cons(c > d).
We are about to meet such a partial order.

Definition 26. Let κ be infinite.

(a) We define µ be the probability measure on the product space 2κ as follows: If σ is a finite
function from κ to 2, and [σ] = {f ∈ 2κ : σ ⊂ f}, then µ([σ]) = 2−|σ|. We extend µ to a measure
on the Borel subsets5 of 2κ as usual: µ(B) = inf{µ(u) : u open and B ⊂ u}.

(b) If B,B′ are Borel, then B ≡ B′ iff µ((B \ B′) ∪ (B′ \ B)) = 0. The measure algebra
Mκ = {B/ ≡: B Borel, µ(B) > 0}. B/ ≡ ≤ B′/ ≡ iff ∃C ∈ B/ ≡, C ′ ∈ B′/ ≡ C ⊂ C ′.

We defined Mκ in terms of / ≡ in order to make Mκ separative, but it is customary to talk
about B instead of B/ ≡ to make notation friendlier. Just be aware that we are speaking of B/ ≡
instead of B.

The following is an easy consequence of the definition of measure:

Fact 15. (a) µ(2ω) = 1.

(b) If B is a family of sets of positive measure whose pairwise intersections have measure zero,
then µ(

⋃
B) = ΣB∈Bµ(B).

(c) µ(2ω \B) = 1− µ(B).

An important corollary to fact 14 (b) is

Corollary 8. Mκ is ccc.

Theorem 26. Assume GCH, cf κ > ω. V Mκ 
 2ω = κ.

Proof. First we show that V Mκ 
 2ω ≥ κ. (This part does not use GCH.) Let ḟ =
⋃
{σ : [σ] ∈ Ġ}.

For δ a limit < κ, define ẋδ = ḟ |{δ+n:n<ω}. We show that if δ 6= δ′ then V M 
 ẋδ 6= ẋδ′ . The proof
uses the following

Fact 16. V Mκ 
 ∀β < κ ∃σ [σ] ∈ Ġ and β ∈ dom σ.

Hence dom ḟ = κ and each ẋδ is defined.

It also uses the following

Fact 17. : Suppose {sn : n < ω} ⊂ [κ]2 is a pairwise disjoint family. Then V Mκ 
 ∃∞n : ḟ |sn is
not constant.

4Recall that g ≥ f iff ∀n : g(n) > f(n).
5The Borel sets are generated from the open sets by complements and countable unions. The important fact here

is that the family of measurable sets is closed under complements and unions.
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Assuming fact 16, fix δ 6= δ′. Let D = {B : B 
 ẋδ 6= ẋδ′}. For n < ω let sn = {δ + n, δ′ + n}.
Fix C ∈Mκ. By the fact, ∃B ≤ C B 
 ḟ(δ + n) 6= ḟ(δ′ + n). So B ∈ D, hence D is dense.

For the proof of V Mκ 
 2ω ≤ κ, closely imitate the proof of theorem 31.

An important corollary to fact 14 (a) is

Corollary 9. V Mκ 
 ϕ iff ∀ε ∈ (0, 1) ∃B µ(B) > ε and B 
 ϕ.

Proof. ⇒ is clear. We show ⇐ via the contrapositive.

If V Mκ 6
 ϕ then ∃B B 
 ¬ϕ, and ∃δ ∈ (0, 1] µ(B) = δ. If δ = 1 we are done. Otherwise, let
ε = 1− δ

2 . If µ(C) = ε, then µ(B ∩ C) > 0, so C 6
 ϕ.

Theorem 27. Mκ is ωω-bounding.

Proof. Fix ḟ : ω → ω. By corollary 34,it suffices to show that ∀ε > 0 ∃B ∈ Mκ ∃g ∈ V B 
 g = ḟ
and µ(B) > ε.

Fix ε. Let A0 be a maximal antichain deciding ḟ(0). Since µ(
⋃
A0) = 1 there is E0 ∈ [A0]<ω with

µ(
⋃
E0) > ε. Define n0 = sup{k : ∃B ∈ E0 B 
 ḟ(0) = k}. (Since E0 is finite, n0 < ω). Let A1 be

a maximal antichain below
⋃
E0 (i.e., if C ∈ A1 then C ≤

⋃
E0) deciding ḟ(1). Since µ(

⋃
E0) > ε,

there is E1 ∈ [A1]<ω with µ(
⋃
E1) > ε. Define n1 = sup{k : ∃B ∈ E1 B 
 ḟ(1) = k}. And so on. In

this way we get a descending sequence {
⋃
Em : m < ω} of conditions and a sequence {nm : m < ω}

where each µ(
⋃
Em) > ε and each

⋃
Em 
 ḟ(m) ≤ nm. Define B =

⋂
m<ω Bm, g(m) = 1 + nm.

Then B ` ḟ < g and µ(B) ≥ ε.

If κ is regular, then V Mκ 
 2ω = κ (proof left to the reader). But Mκ is also useful for the study
of measure and category, defined forthwith.

Recall that an ideal is a family of sets closed under finite union and subset.

An important ideal in the set-theoretic study of the reals is the ideal ofM of meager sets, where
a set is meager iff it is the union of countably many nowhere dense sets.6. Another important ideal
is the ideal of N of measure zero (a.k.a. null) sets.

Whenever we have an ideal I on a set X some natural questions come to mind:

(a) What is the smallest κ so that the union of κ many elements of I is not in I? (This is called
the additivity Add(I))

(b) What is the smallest κ so that the union of κ many elements of I is X? (This is called the
covering number Cov(I).)

(c) What is the smallest κ so that some set of size κ is not an element of I? (This is called
Non(I).)

(d) What is the smallest κ so that there is A ⊂ I with |A| = κ and ∀B ∈ I ∃A ∈ A B ⊂ A?
(This is called the cofinality Cof(I).)

The following facts are well-known.

Fact 18. (a) The above cardinal invariants are the same for M whether the underlying space is
R, the Cantor space 2ω, or the product space ωω —which is homeomorphic to the irrationals.

6A set is nowhere dense iff its closure contains no open set iff the complement of its closure is open dense.
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(b) The above cardinal invariants are the same for N whether the underlying space is R (under
Lebesgue measure), the Cantor space 2ω (under the product measure above), or the product space
ωω — which is homeomorphic to the irrationals (under Lebesgue measure).

(c) All of these cardinal invariants with respect to R are uncountable, so under CH they all equal
ω1.

Fact 19. Let g : ω → ω. Then Lg = {f : f < g} ∈ M.

Proof. In fact, Lg is nowhere dense. We prove this by showing that its complement is nowhere
dense.

Suppose σ is a finite function from ω to ω. If ∃n ∈ dom σ with σ(n) > g(n), let τ = σ. Otherwise
let n /∈ dom σ and set τ = σ ∪ {(n, g(n) + 1)}. In either case, [τ ] ⊂ [σ] and [τ ] ∩Dg = ∅.

Corollary 10. Assume CH. Then V Mκ 
 d = ω1 hence Cov(M) = ω1.

Proof. By theorem 35, {Lg : g ∈ V ∩ ωω} covers ωω.

This theorem is of interest, because if κ is regular uncountable, and CH holds in the ground
model, than V Mκ 
 Cov(N ) = κ. Hence Cons(Cov(M) < Cov(N )). We may prove this when we
discuss iterated forcing.

A theorem we will not prove is the dual:

Theorem 28. Let κ be regular uncountable. Then V Cκ 
 Cov(N ) = ω1 and Cov(M) = κ.

If you are interested in these matters, the standard reference is Bartosynski’s and Judah’s book
Set theory on the structure of the real line.

A relatively short introduction to random and Cohen reals which proves theorem 37 and its dual
is Kunen’s paper Random and Cohen reals in the Handbook of Set-Theoretic Topology. We mention
from that paper, without proof, the characterization of random and Cohen reals.

Definition 27. A real x is Cohen (resp. random) over a model M iff x =
⋃
G where G is

Cω-generic (resp. Mω-generic) over M .

Theorem 29. A real x is Cohen (resp. random) over a model M iff x ∈ E for every open dense
(resp. measure 1) set E ∈M .

We turn now to another way of not collapsing cardinals, known as fusion. Rather than give a
general definition of fusion, we will give an example of its use.

Definition 28. The Sacks partial order S is the set of all nonempty perfect (= closed with no
isolated points) subsets of the Cantor set 2ω;≤=⊂.

S was first used to prove a result in recursion theory. But it is also of interest for cardinal
invariants of the reals.

Note that every nonempty perfect set has size 2ω.

S is provably equivalent to {S : S is a splitting tree, S ⊂ T} where T is the binary tree of height
ω,≤=⊃. (A splitting tree is a separative tree in the upside down order.) The equivalence is: the
tree S corresponds to the set of FS functions determined by its branches. As for the other direction,
a perfect set S ⊂ 2ω corresponds to the tree TS = {σ : ∃f ∈ S f ⊃ σ}.
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Theorem 30. (a) Assume CH. S does not collapse cardinals.

(b) S is ωω-bounding.

Proof. Since |S| = 2ω, under CH |S| = ω1, hence S has ω2-cc and preserves cardinals ≥ ω2. So for
(a)we only have to show that it preserves ω1, i.e., if ḟ : ω → ω1 then range ḟ is bounded below ω1.

In fact we prove (a) and (b) simultaneously by proving: (*) if ḟ : ω → V then Dḟ = {S ∈ S :
for each n there is sn with |sn| ≤ 2n and S 
 ḟ(n) ∈ sn} is dense.

Suppose we’ve proved (*). For (a): Fix ḟ : ω → ω1. Let S ∈ Dḟ via {sn : n < ω}. Each sn is a
finite subset of ω1, hence

⋃
sn is a countable subset of ω1 and S 
 range ḟ ⊂

⋃
sn. For (b): Fix

ḟ : ω → ω. Let S ∈ Dḟ via {sn : n < ω}. ∀n let g(n) = sup sn + 1. Then S 
 ḟ(n) < g(n).

So let’s prove (*). We use the following fact: Every uncountable closed set of reals contains a
perfect set.

Some notation: We denote the finite function σ ∪ {(|σ|, i)} by σi.

Let S ∈ S. Let S∅ ≤ S with S∅ ‖ ḟ(0). Define s0 = {k} where S∅ 
 ḟ(0) = k. Now let S0, S1 < S∅
with Si ‖ ḟ(1), and let s1 = {k : S0 
 ḟ(1) = k or S1 
 ḟ(1) = k}. Etc. I.e., given σ : m − 1 → 2
and Sσ we define Sσ0, Sσ1 ≤ Sσ, each Sσi ‖ ḟ(m), and define sm = {k : ∃τ : m→ 2 Sτ 
 ḟ(m) = k}.

This gives us a branching set of conditions {Sτ : τ ∈
⋃
m<ω(m2)} so that Sτ ≤ Sσ iff τ ⊃ σ, and

Sτ⊥Sσ iff τ⊥σ.

We define the fusion S∗ as follows: Let Sn =
⋃
{Sσ : |σ| = n}. Define S∗ =

⋂
n<ω Sn. Since 2ω is

compact, S∗ is closed uncountable. By the fact there is a perfect set S† ⊂ S∗. S† 
 ∀n ḟ(n) ∈ sn.

Theorem 31. Assume CH, let κ be regular uncountable and let P be a countable iteration of length
κ (whatever that is) of Sacks forcing. Then V P 
 2ω = κ and Inv(N ) = ω1, where Inv is any
cardinal invariant of N defined above.

Proof. By a fusion argument, every new measure zero set sits inside an old measure zero set.

Two hints on the proof: 1. Let Ṅ name a null set in V S, and ε ∈ (0, 1). There is a sequence
of names {u̇n : n < ω} where each u̇n is basic open (hence in V ),7 µ(u̇n) ≤ ε · 2−(2n+1) and V S 

Ṅ ⊂

⋃
n<ω u̇n. Below any fixed element of S we construct a splitting tree {Sσ : σ ∈

⋃
k<ω(k2)} of

conditions as before, where each Sσ decides u̇|σ| = vσ and let ẇn =
⋃
|σ|=n vn. Then µ(wn) = ε ·2−n

and the fusion S 
 Ṅ ⊂
⋃
n<ω wn;

⋃
n<ω wn ≤ ε.

2. Using #1, below any fixed element of S we construct a splitting tree {Sσ : σ ∈
⋃
k<ω(k2)} of

conditions as before, where this time for each Sσ there is vσ with µ(vσ) ≤ 2−(2n+1), if σ ⊂ τ then
vσ ⊃ vτ , and Sσ 
 Ṅ ⊂ vσ. Let S be the fusion, and let W =

⋂
n<ω

⋃
|σ|=n vn. µ(W ) = 0, and

S 
 Ṅ ⊂W .

Gerald Sacks’ original motivation for Sacks forcing was to prove:

Theorem 32. Let M be a countable transitive model of set theory, let G be S-generic over M , and
let x =

⋂
G. Then for all y2ω ∈M [G] \M,M [y] = M [x]; in fact ∀y ∈M [G] \M,M [y] = M [x].

Hence, if x is a Sacks real over M , then there are no models between M and M [x].
7Each u̇n names an element of V , we just aren’t told which one.

25



When are two partial orders P,Q essentially (in the sense of forcing) the same? Clearly if they
have isomorphic Boolean completions (we say then that P ∼= Q). But when does that happen? Also,
when does forcing with one partial order automatically add a generic object you get by forcing with
another partial order?

Definition 29. An embedding e : P→ Q is a complete embedding iff for all p, p′ ∈ P and all q ∈ Q

1. p⊥p′ iff e(p)⊥e(p′)

2. if p ≤ p′ then e(p) ≤ e(p′)

3. ∃r ∈ P q · e(r′) 6= 0 for all r′ ≤ r.

Note that condition (3) follows from (2) and “e[P] is dense in Q.”

For example, let B be the Boolean completion of P. Then the identity map is a complete
embedding from P to B. Similarly, if B is the smallest Boolean sub-algebra of the completion of P
containing P, then the identity map is a complete embedding from P to B.

We write P ≥ Q iff there is some e : P→ Q a complete embedding.

Why are complete embeddings important?

Theorem 33. If P ≥ Q, and Ġ is a Q-generic filter, then e←[Ġ] is a P-generic filter.

I.e., forcing with Q necessarily adds a P-generic object.

Proof. Let e : P→ Q be a complete embedding. Let D be pre-dense in P. It suffices to show that
e[D] is pre-dense in Q.

By the contrapositive, suppose e[D] is not pre-dense in Q. Then there is q ∈ Q with q⊥e(p) for
all p ∈ D. Let r be as in (3): if r′ ≤ r then q · r′ 6= 0 for all r′ ≤ r. If r · s 6= 0 for some s ∈ D, then
q · (r · s) 6= 0, a contradition. So r⊥D, and D is not pre-dense.

Fact 20. P ∼= Q iff P ≥ Q ≥ P.

Proof. The composition of complete embeddings is a complete embedding, and the image of P under
the first embedding is dense in Q whose image is in turn dense in P under the second embedding.
Hence the completion of Q is squeezed above and below by the completion of P, so they are the
same.

Here is a not obvious application of theorem 41.

Fact 21. A countable weak product of partial orders necessarily adds a Cohen real. More precisely,
for n < ω let Pn be any partial order. Define P = ⊕n<ωPn =

⋃
k<ω Πn<kPn, where we say

p̄ = (p0, ...pn) ≤ q̄ = (q0, ...qm) iff n ≥ m and for i < m pi ≤ qi. Then Cω = Fn(ω, 2, ω) embeds
completely in the Boolean completion B of P

Note that if some pi⊥qi, then p̄⊥q̄.
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Proof. For σ ∈ Cω define e(σ) = (pσ(i)
i : i < |σ|) where we define p0 = −p, p1 = p. Then (1) and

(2) are clearly satisfied. What about (3)?

Suppose q ∈ B. Without loss of generality, q ∈ P. Suppose q = (qi : i < n). Define σ : n→ 2 as
follows: σ(i) = 1 iff qi · pi 6= 0. Suppose τ ≤ σ. Then e(τ)|n = e(σ)|n so e(τ) · q 6= 0.

This application is not that useful — we almost never use products. But the method of proof
can be generalized to show that any countable iteration of ccc partial orders with finite support —
whatever those are — necessarily adds a Cohen real, and we will do this later.

As long as we’re on the subject of adding a single Cohen real:

Fact 22. Let P be a countable separative partial order. Then P ∼=
⋃
k<ω(k2), i.e., any countable

separative partial order essentially adds a Cohen real.

Proof. Here is a sketch of the proof: 1. Any two countable atomless Boolean algebras are isomor-
phic. (This is similar to the proof that any two countable dense linear orders are isomorphic.) 2. If
P is a countable separative partial order, consider the smallest Boolean algebra in which P embeds
densely. This is not the completion: it is much smaller, in fact it is countable. Hence any two of
them are the same. But they all embed densely in their completions, hence their completions are
isomorphic.

Corollary 11. Let ẋ by a Cω-name for a real not in V . If M is countable transitive and G is Cω-
generic over M , then M [ẋ/G] (= the smallest model extending M containing ẋ/G) adds a Cohen
real.

Proof. Let P be the partial order in the completion of Cω generated by all Jẋ(n) = iK where
n < ω, i < 2 (or, equivalently, i < ω). Since ẋ /∈ V , P is a countable separative partial order, hence
adds a Cohen real. The reader is invited to show that P ≥ Cω. (Hint: property (3) is the only
not-entirely-trivial property.)

The situation for Sacks reals contrasts with the Cohen situation: If y ∈M [x]∩ 2ω \M , where x
is Cohen over M , then M [y] adds some Cohen real, but it need not be x. There are many models
between M and M [x]. For example, if A (∗ B,A,B ∈ M ∩ P(ω) and x is Cohen over M then
M [x|A] ( M [x|B] ( M [x].
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12 Two-stage iteration

A two-stage product is easy: P×Q has the partial order (p, q) ≤ (p′, q′) iff p ≤ p′ and q ≤ q′.
But iteration is different from product. In product forcing, all the partial orders live in the

ground model. But in iterated forcing, the second partial order does not live in the ground model,
even though V may recognize a partial order with the “same” definition (e.g., “all perfect sets” or
“all positiive measure sets”...) something with the same definition might.

To make this concrete, let’s consider first adding a Cohen real and then adding a Sacks real..

This means first forcing with Cω and then with whatever the new model thinks is the set of all
perfect subsets of R, i.e., with Ṡ. Note that there are perfect sets in V Cω \ V , so Ṡ is not a subset
of V . In general, product forcing is not iteration.8

To force first with Cω and then Ṡ our conditions have the form (p, Ṡ) where p 
 Ṡ ∈ Ṡ, and the
partial order is (p, Ṡ) ≤ (p′, Ṡ′) iff p ≤ p′ and p 
 Ṡ ≤ Ṡ′.

As an exercise, let’s give some specific examples. Let Ġ name the Ċω-generic filter. We use
the characterization of S as the set of splitting subtrees of

⋃
k<ω(kω). Here are four elements of Ṡ.

(Note that ∅ ∈ S for all S ∈ S.)

1. Let ȧ name {n :
⋃
Ġ(n) = 0}. Ṡ names the following binary tree: if σ ∈ Ṡ and |σ| ∈ ȧ then

σ0 ∈ Ṡ and σ1 ∈ Ṡ. Otherwise σ0 ∈ Ṡ and σ1 /∈ Ṡ.

2. Let Ṙ name the following binary tree: if σ ∈ Ṙ and 2|σ| ∈ ȧ then σ0 ∈ Ṙ and σ1 ∈ Ṙ.
Otherwise σ0 ∈ Ṙ and σ1 /∈ Ṙ.

3. Let Ṫ name the following binary tree: if σ ∈ Ṫ and |σ| /∈ ȧ then σ0 ∈ Ṫ and σ1 ∈ Ṫ .
Otherwise σ0 ∈ Ṫ and σ1 /∈ Ṫ .

As an example, let p be the following condition (listed as a sequence rather than a function):
p = (0101). Then p puts the following elements in ȧ: 0, 2. And p puts the following elements in
ω \ ȧ: 1, 3. So p puts the following sequences in Ṡ: ∅, (0), (1), (00), (10), (000), (001), (100), (101),
(0000), (0010), (1000), (1010).

Exercise:

Let p = (0101). What does p put into Ṙ, Ṫ?

As an example, we’ll show that V Cω 
 Ṡ⊥Ṫ : Suppose some p 
 σ ∈ Ṡ ∩ Ṫ . If σ(k) = 1 for
some k then, by definition of Ṡ, Ṫ , p 
 σ|k−1 splits in both trees, so p 
 (k − 1 ∈ ȧ and k − 1 /∈ ȧ),
a contradiction. Hence ∀n ∈ dom σ σ(n) = 0. So Ṡ⊥Ṫ = {σ : ∀n ∈ dom σ σ(n) = 0}, which is not
a splitting tree.

Exercise:

Show that V Cω 
 Ṡ, Ṙ are not comparable.

Now for the general definition:

Definition 30. Let P be a partial order in V , and suppose V P 
 Q̇ is a partial order. We define
P ∗ Q̇ = {(p, q̇) : p 
 q̇ ∈ Q̇} under the order (p, q̇) ≤ (p′, q̇′) iff p ≤ p′ and p 
 q̇ ≤ q̇′.

Here is an interesting example, known as Mathias forcing:9

P = [ω]ω;≤=⊂∗. Let Ġ be a P-generic filter. Note that A 
 C ∈ Ġ iff C ⊃∗ A.
8In rare cases it is, as we’ll see later.
9developed to discuss some questions in descriptive set theory
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Fact 23. 1. P is countably closed, hence adds no new reals.

2. V P 
 Ġ is a non-principal ultrafilter on ω.

3. V P 
 Ġ is a Ramsey ultrafilter, i.e., V P 
 if ~A = {An : n < ω} ∈ [ω]ω pairwise disjoint and⋃ ~A = ω then there is B ∈ Ġ either ∃n An ∈ Ġ or ∀n |B∩An| ≤ 1 (we say that B is good for ~A).10

Proof. For#1: This is because any countable non-principal filterbase on ω has a lower bound.

For #2: Ġ is a filter by definition.

For non-principal: Fix a ∈ [ω]<ω. Given A ∈ P, let B = A \ a. Then B ≤ A and B 
 a /∈ Ġ.

For ultrafilter: We use the fact that there are no new subsets of ω in V P. So it suffices to show
that V P 
 ∀C ⊂ ω either C ∈ Ġ or ω \ C ∈ Ġ. Fix C ⊂ ω and let A ∈ P. If C ∩ A is finite, let
B = A \C. Then B ≤ A and B 
 ω \C ∈ Ġ. If C ∩A is infinite, let B = A∩C. Then B ≤ A and
B 
 C ∈ Ġ. So {B : B 
 (ω \ C ∈ Ġ or B 
 C ∈ Ġ)} is dense, hence Ġ is an ultrafilter.

For #3: First note that, by #1, if V P 
 ~̇A is a countable sequence of subsets of ω, then V P 


there is some ~B ∈ V with ~̇A = ~B. So it suffices to consider ~A ∈ V .

Let ~A = {An : n < ω} ∈ [ω]ω pairwise disjoint,
⋃ ~A = ω. Let A ∈ P. If ∃n A∩An is infinite, let

B = A ∩An. If ∀n A ∩An is finite, there is B ∈ [A]ω with |B ∩An| ≤ 1 for all n. In either case B
is good for ~A and B 
 B ∈ Ġ. So {B ∈ P : B 
 (B is good for ~A and B ∈ Ġ)} is dense.

Now define Q̇ = {q = (aq, Aq) : aq ∈ [ω]<ω, Aq ∈ Ġ, sup aq < inf Aq}; q ≤ qq′ iff aq ⊃ a′q, Aq ⊂
A′q, sup a′q < inf(aq \ a′q), (aq \ a′q) ⊂ A′q.11

Exercises: 1. V P 
 Q̇ is ccc, in fact σ-centered. (Hint: Fix a. In V P, what can you say about
{q : aq = a}? Use that V P 
 Ġ a filter.)

2. If (A, q) ∈ P ∗ Q̇, then Aq ⊃∗ A.

Let Ḣ be the Q̇-generic filter over V P. Let Ċ =
⋃
q∈Ḣ aq

Exercise: V P∗Q̇ 
 Ċ ⊂∗ A for all A ∈ Ġ.

Note that while the elements of Q̇ are in V , Q̇ itself is not in V , since its definition depends on
Ġ.

Mathias forcing is the forcing P ∗ Q̇. It first adds a Ramsey ultrafilter, and then destroys it by
finding a pseudointersection.

Fact 24. Mathias forcing adds a function ḟ : ω → ω which dominates V ∩ ωω.

Proof. First, some notation: If A ⊂ ω, fA denotes the enumerating function of A, i.e., fA(n) = the
nth element of A.

Let Ċ be the generic set added by Q̇, and define ḣ = fĊ . Suppose g ∈ V, g : ω → ω, g. We show
{(B, q) : (B, q) 
 ḣ >∗ g} is dense.

Pick (A, q) ∈ P ∗ Q̇. Define B as follows: Let n = |aq|. For m ≥ n, km = the least i ∈ A ∩ Aq
with i > g(m). B = aq ∪ {km : m ≥ n}. By definition fB|ω\sup aq > g|ω\sup aq . (B, (aq, B)) ≤ (A, q)
and (B, (aq, B)) 
 ḣ ≥ fB >∗ g.

10Equivalently: F is a Ramsey ultrafilter iff for all f : [ω]m → n for some m,n < ω then there is A ∈ F,A
homogeneous for f .

11Note that V P 
 Q̇ ⊂ V , even though V P 
 Q̇ /∈ V (the name Q̇ is, of course, in V ).
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Here is another example of two-step iterated forcing:

Theorem 34. Cons(2ω1 = ω17 and 2ω2 = ω42).

Proof. Start with a model of V of GCH.

If your instinct is to force with Fn(ω17, 2, ω1) ∗ ˙Fn(ω42, 2, ω2) — forget it. In order to have
Ḟ (ω42, 2, ω2) have the ω3-cc and not collapse cardinals, we would need that V Fn(ω17,2,ω1) 
 [ω2]ω1 =
ω2. Which it doesn’t.

So instead we switch: let P = Fn(ω42, 2, ω2), and in V P let Q̇ = ˙Fn(ω42, 2, ω2). Since P adds no
subsets of ω, V P 
 [ω1]ω = ω1, which is what we need to show that V P 
 Q̇ has the ω2-cc, hence
does not collapse cardinals.

Let’s carefully examine the definition of Q̇ in the proof of theorem 25. Because P is ω2-closed,
V P 
 ∀ḟ ∈ V <ω1 ∃g ∈ V ∩ V <ω1 ḟ = g. So V P 
 V ∩ Fn(ω17, 2, ω1) = ˙Fn(ω17, 2, ω1). I.e.,
P ∗ Q̇ ∼= Fn(ω42, 2, ω2)× Fn(ω17, 2, ω1). This iteration is actually a product.

There are two other standard instances of this phenomenon.

First a definition: Given a set I, MI is the measure algebra on 2I ; CI = Fn(I, 2, ω). We will
not prove

Theorem 35. Let I, J be disjoint. Then MI∪J = MI ×MJ
∼= MI ∗ ṀJ .

The interested reader can look this up in Kunen’s article. It is essentially the Fubini theorem,
and its proof is not nearly as trivial as the proof of

Theorem 36. Let I, J be disjoint. Then CI∪J = CI × CJ
∼= CI ∗ ĊJ . In fact, for any J , for any

partial order P,P ∗ ĊJ
∼= P ∗ CJ .

Proof. V P 
 if ṗ is a finite function into 2, then there is q ∈ V with q = ṗ. So V P 
 V ∩CJ = ĊJ .

A proof similar to the proof of fact 21 gives:

Theorem 37. Let P be a ccc iterated forcing with finite support of length γ. Then Cγ ≥ P.

Theorem 38. If P is ccc and V P 
 Q̇ is ccc, then P ∗ Q̇ is ccc.

Before proving this theorem, let’s put it in context.

Theorem 21 stated that MA + ¬CH ⇒ the product of two ccc spaces is ccc. But this is not
always true.

What can go wrong is that V |= P is ccc, but V P 
 P is not ccc. When this happens P2 is not
ccc.

For example, the partial order sending a branch through a Suslin tree is ccc but forces its own
lack of ccc. Back in the mid-1970’s, Galvin proved that under CH there is a separative ccc partial
order whose product is not ccc. Fleissner then got the same conclusion in any V Cω1 , and then
Roitman got the same conclusion in any V Cω or V Mω . We may prove the Cω result later.
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Proof. Let V P 
 Q̇ is ccc. Suppose A = {(pα, q̇α) : α < ω1} is an antichain in P∗Q̇. If {pα : α < ω1}
is countable, then there is p and uncountable E so α ∈ E ⇒ p = pα. Hence p 
 q̇α⊥q̇β for
α 6= β ∈ E, which contradicts V P 
 Q̇ is ccc

Now suppose {pα : α < ω1} is uncountable. Let Ġ be the P-generic filter, and define Ė =
{(pα, α) : α < ω1}, i.e., pα ∈ Ġ ⇒ α ∈ Ė. If some pα 
 Ė countable, then Hα = {β : pα
is compatible with pβ} is countable. If {α : Hα is countable} is uncountable, then by induction
we can construct an uncountable set W ⊂ ω1 so that if α < β ∈ W then pα /∈ Hβ, i.e., W is an
uncountable antichain. But P ccc, so there are at most countably many such pα with Hα countable.
By throwing them away we may assume that each pα 
 Ė is uncountable, i.e., V P 
 {α : pα ∈ Ġ}
is uncountable.

If pα · pβ 6= 0 then, since A is an antichain, pα · pβ 
 q̇α⊥q̇β. And V P 
 if pα, pβ ∈ Ġ then
pα · pβ 6= 0. i.e. V P 
 {q̇α : α ∈ Ė} is an antichain in Q̇. Since V P 
 Q̇ is uncountable, this
contradicts the hypothesis that V P 
 Q̇ is ccc.

By closely imitating the proof of theorem 38, we have

Theorem 39. For any regular κ, if P is κ-cc and V P 
 Q̇ is κ-cc, then P ∗ Q̇ is κ-cc.
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13 Iterated forcing

Definition 31. An iterated forcing of length γ is a sequence of the form {Pα : α < γ} where
|P0| = 1, and each Pα+1 = Pα ∗ Q̇α.12 Given the iteration {Pα : α < γ} and α < γ, we write
Pα = {Pβ : β < α}.

A word about how the iteration starts off. P0 is the trivial partial order. Q0 ∈ V P0 = V .
P1 = P0 ∗Q0.13

Note that when α > 0 is a limit. then Pα is also a limit, that is, each p ∈ Pα is the union of all
pγ , γ < α.

A condition in the iterated forcing {Pα : α < γ} is necessarily a function p with domain γ, each
p(α) = pα ∈ Pα. Hence p0 = 1P0 , p1 ∈ Q0, and each pα 
 pα+1 = pα ∗ q̇α, where pα 
 q̇α ∈ Q̇α. This
is not, however, sufficient — not all such functions are forcing conditions in a particular iteration,
and part of the art of constructing any particular iterated forcing is constraining which functions
are conditions.

The order is: p ≤ p′ iff each pα 
 q̇α+1 ≤ q̇′α+1.

We have Pα ≥ Pβ if α < β by the embedding e(p)(δ) = pδ if δ < α; otherwise e(p)(δ) = 1Pδ .
(Note: From now on we will dispense with the subscript on 1.)

It is very important to note that conditions in each Pα are sequences of names, and hence
elements of V , so we can talk about these names even though we don’t know exactly what these
names signify.

Definition 32. An iterated forcing {Pα : α < γ} is said to have finite support (respectively,
countable support) (respectively, support of size λ) iff for every condition p at most finitely many
(respectively countably many) (respectively λ many) pα satisfy pα 6
 q̇α = 1.

We define the support of a condition p to be {α+ 1 : pα 6
 q̇α = 1}.
Let P be an arbitrary property of partial orders (e.g., ccc, or countably closed). We say that an

iterated forcing is an iteration of forcings with property P iff each V Pα 
 Q̇α has property P .

Here are two examples:

Adding a scale Given a model V , let QV be the standard ccc partial order forcing some
ġ : ω → ω which dominates V ∩ωω. (See theorem 21(b) for the definition of QV .) Let cf κ > ω. We
define a finite support iteration Pscale = {Pα : α < κ} where P0 = QV , and each V Pα 
 Q̇α = Q̇V Pα .
We denote by ġα the generic function added by Q̇α. By definition, if ḟ ∈ (ωω)Pα then ġα ≥∗ ḟ .

Pscale adds a κ-scale. To show this we will need: Theorem 40: a finite support iteration of ccc
forcings is ccc; and the following corollary of theorem 42: if κ has uncountable cofinality,and P is
a ccc iteration of length κ with finite support, then any name for a countable subset of V in V P is
an element of some V Pα where α < κ. We will prove these theorems later.

Using theorems 40 and 42, let’s prove that this forcing adds a κ-scale, i.e., that {ġα : α < κ} is a
dominating family well-ordered by ≤∗: If ḣ : ω → ω,14 then there is α with ḣ ∈ V Pα . By definition
of Q̇α, ḣ <

∗ ġα. So {ġα : α < ω} is a dominating family. Since each ġα ∈ V Pα+1 , if α < β, then
ġα <

∗ ġβ. So {ġα : α < κ} is well-ordered by ≤∗.
12It is possible to have iterations along other sorts of directed systems, but we will not deal with this here.
13when we refer to all Q̇α, the reader is reminded that we are including Q0
14this includes ḣ = f̌ for some f ∈ V
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A well-ordered base for the club filter Given a model V of GCH, let CV = {C ∈ V : C is
a closed unbounded subset of ω1}. Recall that CV is closed under countable intersection, i.e., the
countable intersection of clubs is club. We define the forcing QV = {(c, C) : c ∈ V is a countable
closed subset of ω1, C ∈ CV }. The order is: (c, C) ≤ (c′, C ′) iff c′ is an initial segment of c, C ⊂ C ′
and c \ c′ ⊂ C ′. If Ġ is the QV -generic filter, we define Ḋ =

⋃
{c : ∃C (c, C) ∈ Ġ}.

The following is assigned for homework, due orally on the Tuesday after break:

1. QV is countably closed.

2. Ḋ is uncountable.

3. Define A ⊂ctble B iff A \B is countable. Then Ḋ ⊂ctble C for all C ∈ CV .

We proved in class that, assuming #1, Ḋ is closed, hence, by #2, Ḋ is club. Proof that Ḋ is
closed: It suffices to show that if p 
 E ⊂ Ḋ for some countable E, then ∃q ≤ p q 
 sup E ∈ Ḋ.
(By #1, no countable subsets of V are added, so it suffices to consider ground model sets E.) So
suppose some p 
 E is a countable subset of Ḋ. Since E is countable, there is f : ω → E, f is 1-1
onto. Let qn = (cn, Cn) ≤ p be a descending chain of conditions, where each f(n) ∈ cn —- we can
do this because p 
 E ⊂ Ḋ. Let q = (c, C) be a lower bound of all qn. By definition, E ⊂ c. Since
c is closed, sup E ∈ c. And q 
 c ⊂ Ḋ.

Later we will need the following: if CH holds in V , then QV is ω2-cc (because two conditions
with the same first coordinate are compatible). Note that cf ω2 > ω1.

For uncountable sets A,B we write A ≤c B iff A \B is countable. Then V QV 
 Ċ ≤c D for all
D ∈ CV . I.e., Ċ is a lower bound for the club subsets of V .

We define a countable support iteration Pclub = {Pα : α < ω2} where Q0 = QV and each
Q̇α = Q̇V Pα . This forcing adds a ≤c-decreasing ω2 sequence of club sets {Ċα : α < ω2} so that if
Ḋ is club in ω1 then there is some α with Ḋ ≥c Ċα. So in V Pclub we have an ω2-descending family
(under ≤c) of club sets which generates the club filter.

To show this we need: Theorem 41: a countable support iteration of countably closed forcings is
countably closed; and the following corollary of theorem 42: if CH holds, cf κ > ω1, P is a countably
closed iteration of length κ and if Ḋ names a subset of ω1 in V P then there is α < κ with Ḋ ∈ V Pα .

Given theorem 41 and theorem 43, the proof that Pclub adds a well-ordered base for the club
filter is similar to the proof that Pscale adds a scale.

So we need two types of theorems: 1. cardinals are not collapsed; 2. small sets are added at
early stages.

First, we give sufficient conditions for not collapsing cardinals:

Theorem 40. Iterated ccc forcing with finite support is ccc, hence does not collapse cardinals.

Proof. Suppose that {Pα : α < γ} is a finite support iteration of ccc forcings. Suppose we know
that each Pα is ccc for α < β. If β = α + 1, then we are done by 2-stage iteration. Otherwise β
is a limit. Suppose A is an uncountable antichain in Pβ. Without loss of generality |A| = ω1. Let
S = {support(p) : p ∈ A}. Since S is a family of ω1 many finite sets, without loss of generality S is
a ∆-system with root r. For p ∈ A, let p′α = pα if α /∈ r; otherwise p′α = 1. Then p 6= q ∈ A⇒ p′, q′

compatible (because if p′α 6= 1 then q′α = 1 and vice versa). Hence if p 6= q ∈ A then ∃α ∈ r pα⊥qα.
But sup r < β, so Psup r is ccc, hence A is not an antichain.

Theorem 41. Iterated countably closed forcing with countable support does not collapse cardinals.
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Proof. Let P = {Pα : α < γ} be an iteration of countably closed forcings with countable support.
Suppose {pn : n < ω} is a descending sequence of conditions, support pn = Sn. Note that each
Sn ⊂ Sn+1. Let S =

⋃
n<ω Sn. We define p a lower bound for {pn : n < ω} by induction on S:

Suppose we know pα+1 for α ∈ S. Let β = inf S \ α + 1. Let q̇δ = 1 if α < δ < β, and for
all δ ∈ (α, β), pδ 
 pδ+1 = pδ ∗ q̇δ; hence we have defined pβ. Each (pn)β+1 = rn ∗ q̇n for some rn.
Define pβ+1 = pβ ∗ q̇ where pβ 
 q̇ is a lower bound for {q̇n : n < ω}. Etc.

Support p = S, which is countable, so p ∈ P. By construction, p ≤ pn for all n.

Now to give sufficient conditions for small sets being added at early stages. We use the fact that
sets in forcing extensions are determined by antichains

Theorem 42. Let {Pα : α < γ} be a κ-ccc iteration with support ≤ λ. Suppose κ ≤ λ < cf γ. If
ẋ ∈ [V ]≤λ then there is δ < γ, ẋ ∈ V Pδ .

Proof. We work in V Pγ . Since ẋ ⊂ V and |ẋ| ≤ λ, there is ḟ : λ → V, ẋ = range ḟ . Since Pγ is
κ- ccc, for each α < λ there is Aα ∈ V , Aα a maximal antichain deciding ḟ(α), |Aα| < λ. Each
Eα =

⋃
p∈Aα support(p) has size ≤ λ, as does E =

⋃
α<λEα. So supE < γ. Let δ > supE. Then

∃ẏ ∈ Pδ ẋ ∼= ẏ.

In particular, the hypotheses of theorem 42 hold if P is a ccc iteration with finite support and cf
γ > ω; or P is a countable support ω2-iteration of countably closed forcings with ω2=cc, cf γ > ω1.

These three theorems complete the proofs that Pscale adds a scale, and that Pclub adds a well-
ordered base for the club filter on ω1.
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14 MA + ¬CH is consistent

We are about to prove the consistency of MA + ¬CH.

Some useful notation: if X is definable from parameters in M a model (hence X ∈ M), then
XM = {x : M |= x ∈ X}. Similarly, if Ẋ is definable from parameters in MP a model (hence
Ẋ ∈MP), then ẊMP

= {ẋ : MP 
 ẋ ∈ Ẋ}15

First, a technical lemma.

Lemma 3. Let P be a ccc separative partial order of size κ.

(a) For all λ < κ, (λω)V
P ≤ (κω)V .16

(b) For all λ < κ, (2λ)V
P ≤ (κλ)V .

Proof. (a) In V P, let ḟ : ω → λ. Each ḟ(n) is determined by a countable antichain An ⊂ P. In V ,
how many such antichains are there? κω. In V , how many sequences of such antichains are there?
(κω)ω = κω

(b) In V P, let ḟ : λ→ 2. Each ḟ(α) is determined by a countable antichain Aα ⊂ P. In V , how
many such antichains are there? κω. In V , how many λ-sequences of such antichains are there?
(κω)λ = κλ

Corollary 12. Assume GCH, and let P be a ccc separative partial order of size κ, where κ is
regular. Then ∀λ < κ (2λ)V

P ≤ κ.

Proof. If GCH holds and κ is regular, then κ<κ = κ.

Theorem 43. Let κ be regular in a model V of GCH. Then there is a partial order PMA so that
V PMA 
 MA+ c = κ.

Proof. We want to find a model of: c = κ and if Q is a ccc separative partial order, and D is a
family of dense sets, where |D| < κ, then there is a filter G ⊂ Q, G ∩D 6= ∅ for all D ∈ D.

First, note that if D is dense, and A is a maximal antichain of D, then ΣA = ΣD = 1, and
a filter meeting A also meets D. So it suffices to require: if A is a family of maximal antichains
where |A| < κ then there is a filter G so if A ∈ A then G ∩A 6= ∅.

Suppose such a G exists. Then there is a partial order Q′ of size |A|, Q′ ⊂ Q, with G ⊂ Q′ and⋃
A ⊂ Q′ (namely the Boolean algebra generated by

⋃
A). A filter in Q′ meeting every A ∈ A is

a filter in Q meeting every A ∈ A. So it suffices to look at ccc separative partial orders of size < κ,
and familes of maximal antichains of size < κ.

We will use ccc iterated forcing that works its way through every ccc separative partial order of
size < κ that arises at earlier stage. I.e., our final partial order PMA will be a ccc iteration with
finite support {Pα : α < κ} where each Pα 
 Q̇α is a ccc separative partial order of size < κ.

Why does it suffice to consider only κ many such partial orders? And how can we make sure
that we take care of each one?

15for those who know what elementary submodels are: if M is an elementary submodel of a sufficiently large H(θ),
then XM = X ∩M ; a similar statement holds for MP

16Here “λω” denotes the cardinal, not the set of functions, so we don’t need a λ̇ω.
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Since every partial order of size λ is isomorphic to a partial order on λ, it suffices to consider
partial orders on each λ < κ.

So we consider only partial orders of the form Q̇ = (λ, ≤̇Q̇), where λ < κ.

How big is our final iteration PMA? Each condition is a sequence of functions from κ with finite
support, and if α+ 1 ∈ support p then pα 
 q̇α ∈ λ for some λ < κ , so |PMA| = [κ]<ω = κ.

What about the ≤̇Q̇’s? Each is a subset of λ2 for some λ < κ. So by corollary 12 there are at
most κ many. And by theorem 42, each is an element of some (hence all but < κ-many) V Pα .

Also, suppose Ȧ is a family of maximal antichains of some Q̇ a partial order on some λ < κ,
|Ȧ| < κ. If Ȧ ∈ Ȧ then Ȧ is a countable subset of λ, so by theorem 42 Ȧ ∈ PαȦ for some αȦ < κ.
Since |Ȧ| < κ, sup{αȦ : Ȧ ∈ Ȧ} < κ, hence ∃α ∀γ > α Ȧ ⊂ V Pγ . If Q̇ = Q̇β for some γ > α then
any Q̇γ-generic filter meets every element of Ȧ.

Now we know how to proceed.

Let h : κ → κ2 so that if h(α) = (β, γ) then β ≤ α. For each β, let {Q̇β,γ : γ < κ} list all ccc
separative partial orders in V Pα of size < κ so each partial order is listed κ many times.17. Let
PMA be the iteration with finite support of {Pα : α < κ} where each Pα+1 = Pα ∗ Q̇h(α).18

Now we show that MA + c = κ holds in V PMA .

First, since cofinally many Q̇α = Cω, we have added κ many Cohen reals, so c ≥ κ. Second, by
lemma 3(b), c ≤ κ. Hence (c)V

PMA = κ.

Now for MA. Suppose Q̇ is a PMA-name for a partial order on some λ < κ, and Ȧ is a PMA-name
for a family of maximal antichains of Q̇. |Ȧ| < κ. Then Q̇ = Q̇α for a cofinal set of α’s and there
is α so if γ > α then Ȧ ⊂ V Pγ . Let γ > α with Q̇ = Q̇α. The Q̇γ-generic filter over V Pγ is a filter
in Q̇ meeting each element of Ȧ.

17the convention we use is that each Q̇0,β names a partial order in the ground model V
18this is often shortened to “by a bookkeeping argument...”
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15 Easton forcing

Recall König’s theorem: cf 2κ > κ. Clearly 2κ ≤ 2λ if κ ≤ λ. The purpose of this section is to show
that these are, effectively, the only constraints on (simultaneously) all 2κ for κ regular.

We define REG = the class of regular cardinals. The class 19 function v : REG → CARD is
Easton iff κ ≤ λ⇒ v(κ) ≤ v(λ) and each cf v(κ) > κ.

Theorem 44. (Easton) Assume GCH. Let v be an Easton function. Then there is partial order
Pv where V Pv 
 2κ = v(κ)

Proof. In the 2-step iteration of theorem 34, in order to avoid collapsing cardinals we needed to
change 2ω2 before 2ω1 . This downgraded our iteration to a product of partial orders in the ground
model. This is the insight that allows Easton’s construction to go forward.

So let v be an Easton function. We define the elements of Pv as follows: p ∈ Pv iff dom p is an
initial segment of REG, each p(κ) ∈ Fn(v(κ), 2, κ), and for all cardinals λ ≤ sup dom p, |{κ ∈ λ∩
REG: p(κ) 6= ∅}| < λ . (This last clause is only meaningful when λ is a regular limit cardinal, i.e.
when λ = ℵλ; otherwise it is automatically satisfied.)

Pv is also a class. Define V Pv =
⋃
κ∈REG V

Pv,κ , where Pv,κ = {p ∈ P : dom p ⊂ κ}.
We define the order: p ≤ p′ iff dom p ⊃ dom p′ and if α ∈ dom p′ then p(α) ⊃ p′(α).

Define Pκv = {p ∈ Pv : p(λ) 6= ∅ then λ ≥ κ}. Then, for each κ, Pv = Pv,κ × Pκv = P κv ∗ (Pv,κ)V .

Each Pλv is, by definition, λ-closed, so it preserves cardinals ≤ λ.

In general, if Q is a class forcing, then V Q need not be a model of ZF: consider Q = Fn(ω,ORD, ω),
which makes ORD countable. In V Q, replacement fails. Luckily that doesn’t happen here. It is
a useful exercise (left to the reader) to show that V Pv 
 ZFC. This relies heavily on the fact that
each Pλv is λ closed, so adds no sets of size < λ.

We show that each Pv,λ+ is λ+-cc:

Let p ∈ Pv,λ+ , and let Ip = {κ ∈ REG: p(κ) 6= ∅}. Each |Ip| < λ (because Ip ⊂ (Ip∩λ)∪{λ} and
|Ip ∩ λ| < λ). For all κ ∈ Ip let Ep,κ = dom p(κ). Each |Ep,κ| < κ ≤ λ. Let Ep =

⋃
κ∈Ip Ep,κ×{κ}.

Each |Ep| < λ. Note that p ⊥ q iff there is (γ, κ) ∈ Ep ∩ Eq with p(κ)(γ) 6= q(κ)(γ).

Suppose {pα : α < λ+} are distinct elements of Pv,λ+ . By GCH λ<λ = λ < λ+, so by the
generalized ∆-system lemma there is X ∈ [λ+]λ

+
with {Ep,α : α ∈ X} a ∆-system with root E.

|E| < λ, so 2|E| ≤ λ, so there is Y ∈ [X]λ
+

so that for all α, β ∈ Y and all (γ, κ) ∈ E pα(κ)(γ) =
pβ(κ)(γ). Hence if α, β ∈ Y then pα, pβ are compatible. So {pα : α < λ+} is not an antichain.

Hence no λ+ is collapsed: Pλ+

v is λ+-closed, so does not collapse λ+; (Pv,λ+)V has λ+ − cc, so
does not collapse λ+, and Pv = P λ

+

v ∗ (Pv,λ+)V .

What about other cardinals?

Fact 25. Suppose ∀α ∈ ON V |= cf α = λ iff V Q 
 cf α = λ. Then Q does not collapse cardinals.

Proof. Suppose κ is regular in V . If V Q 
 |κ| = λ < κ, then V Q 
 cf κ ≤ λ < κ, a contradiction.
Suppose κ is a limit, i.e., κ = sup{κα : α < cf κ} an increasing sequence, where each κα is regular.
Since no κα is collapsed, κ is the sup of an increasing sequence of cardinals, so it must be a
cardinal.

19v is a class, not a set
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So we need to show that cofinalities are preserved by Pv.
First, note that if V |= κ = sup{κα : α < µ} an increasing sequence cofinal in κ, µ = (cf κ)V ,

and V Pv 
 cf κ = λ < µ, then V Pv 
 cf µ = λ: let ˙{λβ : β < λ} be a V Pv -sequence cofinal in κ. In
V Pv define ḟ : λ→ µ by ḟ(β) = inf{κα : κα > λβ}. Then ḟ is non-decreasing and cofinal in µ.

Since V |= µ regular, it suffices to show that the cofinalities of regular cardinals are preserved.

Suppose ḟ : λ → κ is increasing, λ < κ, V |= κ is regular. Pλ+

v is λ+-closed, so adds no new
functions with domain λ. Hence ḟ ∈ V Pv,λ+ . Pv,λ+ has λ+-cc, so for every α < λ there is a maximal
antichain Aα of size ≤ λ so Aα ‖ ḟ(α). Define F ∈ V, F : λ→ κ, F (α) = {β : ∃p ∈ Aα p 
 ḟ(α) =
β}. Each |F (α)| ≤ λ, and ∀α < λ V Pv,λ 
 ḟ(α) ∈ F (α). But V |=

⋃
α<λ F (α) is not cofinal in κ,

so range ḟ is not cofinal in κ, and κ remains regular.

Finally, we show that V Pv 
 2κ = v(κ) for every κ ∈ REG: Since Fn(v(κ), 2, κ) ≥ Pv, 20V Pv 

2κ ≥ v(κ). Since GCH holds, there are at most v(κ) many Pv,κ+-names for subsets of κ, so

V Pv,κ+ 
 2κ = v(κ). Since V κ+

v is κ+-closed, it adds no new subsets of κ. Hence V Pv = V Pκ+
v ∗Pv,κ+ 


2κ = v(κ).

Note that nothing like Easton’s theorem is true for singular cardinals: there are serious con-
straints on 2κ for κ singular. Early on, Silver showed that if κ is singular of uncountable cofinality
then 2κ depends deeply on 2λ for λ < κ. E.g., if, κ = ℵγ singular, cf γ > ω and for some fixed
n, 2ℵα = ℵα+n for all regular ℵα < κ, then 2κ = ℵγ+n. Uncountable cofinality is essential here:
early on, Magidor showed that GCH could hold below ℵω but 2ℵω > ℵ+

ω . Magidor’s techniques do
not extend to making 2ℵω as large as you want: Shelah showed that (ℵω)ω ≤ sup{ℵω4 , c}. Another
theorem of Shelah’s if that if κ is the first cardinal with κcfκ > sup{κ+, 2cfκ} then cf κ = ω.21

20strictly speaking this does not make sense, since Pv is a class, but it’s easy to adapt the definition of ≥ to make
sense of it

21this is an extremely brief summary of the singular cardinals problem, and there are many more profound and
beautiful results in this area
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16 Kurepa’s hypothesis

The point of this section is to give you a sense of how collapsing a large cardinal can give you a
result on small cardinals.

Kurepa’s hypothesis says that there is no Kurepa tree. A Kurepa tree is, in some sense, an
anti-Suslin tree. Define an ω1-tree to be a tree of height ω1 in which every level is countable. A
Suslin tree is an ω1-tree with no uncountable branch and no uncountable antichain. A Kurepa tree
is an ω1-tree with at least ω2 uncountable branches (hence a splitting tree, hence with at least ω2

uncountable antichains).

It is known that in L, the constructible universe, there are Kurepa trees. (That is what the
combinatorial principle � is about.) If there is an inaccessible cardinal in a model V , then you can
define a partial order adding a Kurepa tree to V . This is an exercise in Kunen and I will leave it
as such. Instead we will prove:

Theorem 45. Let κ be inaccessible in V . Then there is a partial order P with V P 
 (κ = ω2 and
there are no Kurepa trees).

Proof. P is defined as follows: p ∈ P iff p is a countable function, dom p ⊂ (κ \ {0})×ω1, and each
p(β, α) < β. p ≤ q iff p ⊃ q.

If {pn : n < ω} is a countable descending sequence of elements of P, then
⋃
n<ω pn is a lower

bound, so P is countably closed and does not collapse ω1.

Since κ is inaccessible, if λ < κ then (λω)+ < κ. So, by a ∆-system argument, P has κ-cc, hence
does not collapse cardinals ≥ κ.

Define Ġ to be the P-generic filter, ḟ =
⋃
Ġ and, for β < κ, ḟβ : ω1 → β by: ḟβ(α) = ḟ(β, α).

By a genericity argument, each ḟβ is onto. Hence if β < κ then V P 
 |β| ≤ ω1, so V P 
 κ = ω2.

Why then does P destroy Kurepa trees?

Suppose Ṫ is an ω1 tree. We want to show that we can factor P in such a way that we can
assume Ṫ is in an intermediate model, and that we are forcing with P over this model.

Without loss of generality, Ṫ = (ω1,≤Ṫ ), so we know Ṫ if we know ≤Ṫ . For each α < β < ω1,
let Aα,β be a maximal antichain deciding ≤Ṫ |{α,β}, i.e., if p ∈ Aα,β then either p 
 α ≤Ṫ β or
p 
 α ≥Ṫ β or p 
 α, β are not Ṫ -compatible.

By κ-cc, each |Aα,β| < κ. There are ω1 many Aα,β. And the Aα,β’s decide Ṫ . So there is λ < κ
with Ṫ ∼= to a Pλ-name, where Pλ = {p ∈ P : dom p ⊂ λ × ω1}. Define Pλ = {p ∈ P : dom
p ∩ λ = ∅}. P = Pλ × Pλ. Pλ also preserves ω1. It collapses something to ω2 — for our purposes,
we don’t care what, as long as it leaves κ strongly inaccessible. Does it? Pλ has at most 2λ-cc, so
there is η ≤ (2λ)V with V Pλ 
 ω2 = η. κ remains a regular strong limit cardinal.

We show Pλ ∼= P: Let E = {(β, γ) : 0 ≤ γ ≤ β ≤ λ}. Let ϕ : E → λ, ϕ 1-1 onto. For p ∈ Pλ we
define p′ ∈ P as follows: p(β, α) = p′(β, α) for all β > λ. If β ≤ λ, p′(β, α) = γ iff p(λ, α) = ϕ(β, γ).
The map p 7→ p′ is an order isomorphism under the order ≤=⊃.

So to show there are no Kurepa trees in the generic extension, it suffices to consider T an ω1-tree
in V . And, since |(2ω1)V |V P

= ω1
22, it suffices to show that P adds no new branches to T .

We write T (δ) = the δth level of T .

Suppose ḃ is a new uncountable branch of T . Since it is a new branch, if p ∈ P then p||“T (α)∩ ḃ”
22i.e., the old 2ω1 is collapsed to ω1
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for at most countable many α. I.e., ∀p∃δp < ω1∀γ ≥ δp p 6‖ “T (γ) ∩ ḃ”. But then if γ ≥ δp there
are β0 6= β1 ∈ T (γ), qp,0,γ , qp,1,γ ≤ p with qp,0,γ 
 β0 ∈ ḃ and qp,1,γ 
 β1 ∈ ḃ.

So fix p. For each k < ω and σ : k → 2 we define pσ as follows: p∅ = p. If we know pσ, let δσ be
as above, pσ_0 = qpσ ,0,δσ , pσ_1 = qpσ ,1,δσ .

Finally, for each f : ω → 2, let pf be a lower bound for {pσ : σ ⊂ f}. Let δ = sup {δpσ : σ ∈⋃
(kω)}.
ḃ ∩ T (δ) 6= ∅. Each pf 
 if γ = {ḃ ∩ T (δ)} then γ ≥ βpσ for all σ ⊂ f . Let qf ≤ pf so that

∃βf qf 
 T (δ)ḃ = βf . If f 6= g then βf 6= βg.

The set {βf : f ∈ 2ω} ∈ V , and V P preserves the order on T . So |T (δ)| ≥ 2ω, a contradiction.
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17 More on Cohen forcing

In this section we present two results on Cohen forcing.

Theorem 46. (Shelah) Let C be a countable separative partial order. Then in V C there is a Suslin
tree.

This is a stronger version of V C 
 ∃ ccc Ṗ with P2 not ccc. The proof I will give is due to
Todorcevic.

The point of this theorem is that there even if there is no Suslin tree in V , a single Cohen real
is enough to add one. So adding a single Cohen real is a little like ♦, i.e., combinatorially a single
Cohen real is quite strong.

Before giving the proof, note that if T is a Suslin tree in V , then V C 
 T is Suslin. This is
because of the following fact:

Fact 26. Let Ė be an uncountable set in V C∩P(V ). Then V C 
 ∃H ∈ V , H uncountable, H ⊂ Ė.

Proof. Let q 
 Ė = {ėα : α < ω1} ⊂ V where the ėα’s are distinct. We show that there is p ≤ q
and H ∈ V uncountable with p 
 H ⊂ Ė.

For each α there is pα ≤ q, pα ‖ ėα, say pα 
 ėα = xα for some xα ∈ V . Since C is countable,
there is Y ∈ [ω1]ω1 and p with p = pα for all α ∈ Y . Hence H = {xα : α ∈ Y } is uncountable, is in
V , and p 
 H ⊂ Ė.

By the fact, if Ṫ is a tree indexed by a set in V , an uncountable chain or antichain Ȧ in V C

would have an uncountable subset Ḃ = {ȧi : i ∈ I} where I ∈ V . Ḃ would also be a chain or
antichain, but the fact that I ∈ V will enable us to use genericity to show this doesn’t happen.

Let’s prove theorem 46.

Proof. First we show that there is a family of functions {fα : ω ≤ α < ω1} where

1. each fα : α→ ω

2. each fα is 1-1

3. each ω\ range fα is infinite.

4. if α < β then {γ < α : fα(γ) 6= fβ(γ)} is finite. (We say that fα ⊂∗ fβ.)

We begin by constructing {fα : ω ≤ α < ω · ω} so α < β ⇒ fα ⊂ fβ: let an ⊂ an+1 ⊂ ω for
all finite n, with each an+1 \ an infinite; construct fω·n 1-1 with domain an so each fω·n ⊂ fω·(n+1),
and for k < ω let fω·n+k = fω·(n+1)|ω·n+k.

Now suppose we have {fβ : ω · ω ≤ β < α} where each |ω\ dom fβ| = ω. If α = β + 1 for some
β, then pick n ∈ ω\ dom fβ, and set fα = {(β, n)} ∪ fβ.

Otherwise there is {βn : n < ω} an increasing sequence with sup α. We construct gn as follows:
g0 = fβ0 . At stage n + 1, we have, for all m ≤ n, gm = ∗fβm , dom gm = βm, gm−1 ⊂ gm, km ∈
ω\range gm. Note that S = ω\ (range gn∪ range fβn+1) is infinite. Let kn+1 ∈ S \ {km : m ≤ n}.
Let a = {ρ ∈ [βn, βn+1) : ∃γ < βn gn(γ) = fα(ρ)}, i.e., a is the set of ρ that might give us trouble
trying to extend gn to a 1-1 function =∗ fβn+1 . Since fβn+1 is 1-1 and fβn+1 ⊃∗ gn, a is finite.
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Let e ∈ [S \ {km : m ≤ n + 1}]|a| and define gn+1 as follows: gn+1|βn = gn; gn+1|[βn,βn+1)\a =
fβn+1 |[βn,βn+1)\a, and gn+1|a is 1-1 onto e. Finally, let fα =

⋃
n<ω gn. By construction fα is a 1-1

function from α to ω with fα ⊃∗ fβ for all β < α. Since {kn : n < ω}∩ range fα = ∅, condition (3)
is met. [Exercise to understand the construction a bit better: What happens when α = β + ω?]

Recall that {fα : α < ω1} generates an Aronszajn tree T = {fα|γ : γ < α < ω1}, under the
partial order s ≤ t iff s ⊂ t.

We will turn this into a Suslin tree.

Let ẋ : ω → 2 be the generic Cohen real added by Ċ. For t ∈ T define ġt = t ◦ ẋ. We show that
Ṫ ∗ = {ġt : t ∈ T} is a Suslin tree by showing that no uncountable subset of Ṫ ∗ is a chain or an
antichain.

By fact 26, it suffices to show that if E ∈ V ∩ [T ]ω1 then Ė∗ = {ġt : t ∈ E} is neither a chain
nor an antichain.

So let p ∈ Fn(ω, 2, ω), dom p = a. There is F ∈ [E]ω1 with {t←[a] : t ∈ F} a ∆-system with
root b. By another reduction we may assume there is σ : b→ a with t|b = σ for all b ∈ F .

To show Ė∗ is not a chain: Pick s, t ∈ F with dom s ⊂ dom t, s 6⊂ t (we can do this because F is
not a chain). Then there is α ∈ dom s with s(α) 6= t(α). Since α /∈ b at least one of s(α), t(α) /∈ a.
Extend p to q ≤ p so dom q = a ∪ {s(α), t(α)} and q(s(α)) = 1− q(t(α)). Then q 
 ġs(α) 6= ġt(α),
so q 
 ġs ⊥ ġt.

To show Ė∗ is not an antichain: Pick s, t ∈ F with dom s ⊂ dom t. If s ⊂ t we’re done, so
suppose F is an uncountable antichain in T . Then s 6⊂ t. Let c = {α ∈ dom s : s(α) 6= t(α)}. c is
finite, and c ∩ b = ∅. If α ∈ c and s(α) ∈ a then, by the ∆-system, t(α) /∈ a. Similarly, if t(α) ∈ a
then s(α) /∈ a. So at least one of s(α), t(α) /∈ a. Extend p to q ≤ p with dom q = a ∪ c and for all
α ∈ c, q(s(α)) = q(t(α)). Then q 
 ġs ⊂ ġt.

Theorem 47. (Harrington) Assume CH. Let P = Cκ where κ ≥ ω1. Then in V P there is a MAD
family of size ω1.

I.e., c can be anything and a = ω1 can hold.

Proof. Let C = Fn(ω, 2, ω). By CH, there is a sequence {ẋα : α < ω1} listing [ω]ω∩V C. Every new
subset of ω is added by a single Cohen real, so if ẋ ∈ V P ∩ [ω]ω then there is α < ω1 with ẋ ∼= ẋα

Suppose we can construct, in V , an almost disjoint family A = {aα : α < ω1} so that for
all ẋα there is β with V C 
 aβ ∩ ẋα is infinite. Consider ẋ ∈ [ω]ω. There is E countable with
ẋ ∈ Q = Fn(E, 2, ω) ∼= C. If G is a P-generic filter then G ∩ Q is a Q-generic filter, hence is
isomorphic to some C-generic filter H, and, for some α, ẋ ∼= ẋα by the same isomorphism. So
V P 
 ẋ∩ aβ infinite iff V Q 
 ẋ∩ aβ infinite iff V C 
 ẋα ∩ aβ infinite. I.e., there will be β so ẋ∩ aβ
is infinite. Since ẋ was arbitrary, A is MAD.

Suppose we have {aβ : β < α}. Consider ẋα. Let C = {pn : n < ω}. Rewrite {aβ : β < α} =
{cn : n < ω}. We construct aα by induction on ω.

At stage n we have disjoint sets {kαm : m < n}, {jαm : m < n} with each kαm, j
α
m ∈ ω \

⋃
i≤m ci.

Let dm = {kαi : i < m} ∪ {jαi : i < m} ∪
⋃
i≤m ci. Also at stage n, for each m < n we have

some qm ≤ pm with qm 
 either (kαm, j
α
m ∈ ẋα \ dm) or (ẋα ∩ dm is infinite and kαm, j

α
m /∈ dm).

At stage n, if pn 
 ẋα ∩ ḋn is infinite, pick kαn , j
α
n distinct elements of ω \ dn, and set qn = pn.

Otherwise, since pn 
 (ẋα is infinite and ẋα ∩ dn is finite), there is qn ≤ pn and distinct kαn , j
α
n with

qn 
 kαn , j
α
n ∈ ẋα \ dn. Let aα = {kαm : m < ω} and note that {jαm : m < ω} ⊂ ω \ aα. Also, note

that aα ∩ cn ⊂ {kαm : m < n} hence is finite.
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It remains to show that aβ ∩ ẋα is infinite for some β ≤ α: Suppose p 
 ∀β < α ẋα ∩aβ is finite.
We show that p 
 ẋα ∩ aα is infinite. By contradiction, assume this fails. By extending p we may
assume there is n < ω p 
 |aα ∩ ẋα| = n < ω. Construct a chain of conditions {qm : m ≤ n} as
follows: q0 ≤ p with q0 
 ∃i0 kαi0 ∈ ẋα; given qm there is qm+1 ≤ qm with qm+1 
 ∃kαim+1

∈ ẋα where
kαim+1

> kαim . Then qn 
 |aα∩ẋα| ≥ n+1, which contradicts qn+1 ≤ p. Hence no p 
 ∀β ≤ α aβ∩ẋα
is finite, so V C 
 ∃β ≤ α aβ ∩ ẋα is infinite.
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18 PFA

In this section we will content ourselves with defining proper forcing, giving some examples, stating
(but not proving) a general iteration theorem, and stating the proper forcing axiom. We will not
give the proof of its consistency, but will mention that the proof involves large cardinals, to wit,
supercompact cardinals (which are stronger than measurable cardinals). It is known that the proof
of the consistency of PFA necessarily involves at least a weakly compact cardinal23. Thus, there is
no proof in ZFC of the consistency of the proper forcing axiom.

Recall the statement of the proper forcing axiom:

Definition 33. PFA is the statement: if P is proper and D is a family of at most ω1 dense subsets
of P, then there is a D-generic filter in P.

Note the similarity to MA — we have simply enlarged the set of forcings we can use. The astute
reader will note the ω1 instead of < c, but this is moot since Velickovic and Todorcevic proved that
PFA ⇒ c = ω2.

The astute reader may also worry: when we invoke PFA are we necessarily invoking a large
cardinal in our hypothesis? The answer is: no. When the actual forcings we are looking at do not
collapse cardinals, then no large cardinal hypothesis is needed, since we could simply have iterated
just these forcings to get the model we are interested in.

We defined proper forcing formally in section 4. Now let’s unpack the definition.

18.1 Clubs and stationary sets

Definition 34. Let X be an uncountable set, and let A ⊂ [X]ω.

(a) We say that A is unbounded iff for all B ∈ [X]ω there is A ∈ A B ⊂ A.

(b) We say that A is closed iff ∀{Bi : i < ω} ⊂ A where each Bi ⊂ Bi+1
⋃
i<ω Bi ∈ A.

(c) We say that A is stationary iff ∀C closed unbounded (= club) A ∩ C 6= ∅.

As usual, club = closed unbounded.

Exercises 1. Using the identity α = {β : β < α} for each α ∈ ON , prove that A contains a
club in [ω1]ω iff A ∩ ω contains a club in ω1. Then prove that A is stationary in [ω1]ω iff A ∩ ω is
stationary in ω1.

2. Suppose Y is an uncountable subset of X. Prove that if A contains a club (respectively is
stationary) on [X]ω, then A|Y = {a ∩ Y : a ∈ A} contains a club (respectively is stationary) on
[Y ]ω. Conversely, if A contains a club (respectively is stationary) of [Y ]ω then there is B,B|Y = A,
B contains a club (respectively is stationary of [X]ω.

Definition 35. P is proper iff for all uncountable X and every A ⊂ [X]ω with A ∈ V , V |= A is
stationary iff V P 
 A is stationary.

We say that P preserves stationary sets.

Fact 27. If P is proper, then it preserves ω1.
23κ is weakly compact iff κ→ (κ)22, i.e., iff a form of Ramsey’s theorem holds for κ
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Proof. Suppose V P 
 |(ω1)V | = ω. Working in V P, there is an increasing ḟ : ω → (ω1)V with range
ḟ cofinal in (ω1)V . Consider {ḟ(n) + 1 : n < ω} ∈ V P. This is club in (ω1)V , but it misses the
ground model stationary set S = {α < (ω1)V : α a limit}. So V P 
 S is not stationary, hence P is
not proper.

Note that a proper forcing need not preserve other cardinals. For example, Fn(ω1, ω2, ω1)
collapses ω2, but it is countably closed and hence, as we shall shortly learn, proper.

Theorem 48. (Baumgartner, Harrington, Kleinberg 1976) There is a forcing which preserves ω1

which is not proper.24

Proof. Let S be any stationary set. We define P = {a ⊂ S : a is closed}. The order is: a ≤ b iff
a ⊃ b and ∀α ∈ a \ b ∀β ∈ b α > β (i.e., a is an end-extension of b).

Clearly, if Ġ is P-generic, V P 

⋃
Ġ ⊂ S and

⋃
Ġ is a club (because if it weren’t, some a ∈ Ġ

would know that
⋃
Ġ ∩ sup a is not closed). So V P 
 S contains a club.

Lemma 4. P adds no new functions from ω to V (hence does not collapse ω1).

Proof. Suppose b 
 ḟ : ω → V . For each a ≤ b and each γ < ω1 we fix a set Aa,γ so that

1. ∀n < ω there is c ∈ Aa,γ with c ‖ ḟ(n)

2. if c ∈ Aa,γ then c ≤ a and sup c > γ

3. Aa,γ is minimal with respect to properties (1) and (2).

Note that, by (3), each Aa,γ is countable.

We also define, for each countable A ⊂ P, ht A = sup
⋃
A

We construct sets Aα as follows: A0 = Ab,sup b. If β is a limit, Aβ =
⋃
γ<β Aγ . Aβ+1 =⋃

a∈Aβ Aa,htAβ . Setting γβ = ht Aβ, note that C = {γβ : β < ω1} is club. So there is some
γ ∈ S ∩ C.

We construct a descending chain b ≥ a0 ≥ a1 ≥ ...an ≥ an+1... where each an ‖ ḟ(n) as
follows: let {αn : n < ω} be an increasing sequence of successor ordinals converging to γ. Let
a0 ∈ Aa0,htAα0

, a0 ‖ ḟ(0). Given an, let an+1 ∈ Aαn+1 ∩ Aan,htAαn , an+1 ‖ ḟ(n + 1). Define
a =

⋃
n<ω an ∪ {γ}.

a ∈ P: Since γ ∈ S, a ⊂ A. By end-extension, each proper initial segment of a is closed. Since
γ = sup{sup c : c a proper initial segment of a}, a is closed.

a 
 ḟ ∈ V : ∀n < ω a ≤ an ‖ ḟ(n). So ∀n < ω a ‖ ḟ(n).

Hence P preserves ω1. But note that if S is stationary co-stationary, then V P 
 ω1 \ S is not
stationary, so P is not proper.

24of course, since this result came about at least five years before the definition of proper forcing, this is not how
they stated their theorem
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Fact 28. (a) If P is proper and V P 
 Q̇ is proper, then P ∗ Q̇ is proper.

(b) An iteration of proper forcings with countable support is proper.25

The proof of (b) is highly technical, so we only prove (a).

First a useful lemma:

Lemma 5. (V P)Q̇ = V P∗Q̇.

Note that the lemma has nothing to do with proper forcing, but is simply true for any two-step
iteration.

An alternate statement of this lemma takes the generic filter point of view: If K is P∗ Q̇-generic
over M , then M [K] = M [G][H] where G is P-generic over M , and H is Q̇/G-generic over M [H].

Proof. We work by induction on the level of construction of ẋ. Suppose (V P)Q̇ ∩ ẋ = V P∗Q̇ ∩ ẋ.
ẋ ∈ V P∗Q̇ iff ẋ is a set of pairs ((p, q̇), ẏ) where (p, q̇) 
 ẏ ∈ ẋ. But (p, q̇) 
 ẏ ∈ ẋ iff p 
 (q̇ 
 ẏ ∈ ẋ).
So letting ẋ′ = {(p, (q̇, ẏ)) : p 
 (q̇ 
 ẏ ∈ ẋ′)}, by extensionality ẋ = ẋ′; ẋ′ ∈ (V P)Q̇.

Now to prove fact 28:

Proof. Let S ∈ [X]ω where X is uncountable, and suppose V |= S is stationary. Then V P 
 S is
stationary. Since V P 
 Q̇ is proper, (V P)Q̇ 
 S is stationary.

While definition 35 is the simplest definition of “proper” to state, it is not the easiest one to apply,
and for that definition we have to look more closely at pre-dense sets in elementary submodels.

18.2 Elementary submodels

Definition 36. If M,N are models of the same language, then M ≺ N (read: M is an elementary
submodel of N) iff M ⊂ N and for any sentence ϕ with parameters in M , M |= ϕ iff N |= ϕ.

Here’s a negative example: Consider the language of fields (with operation symbols +, · and
constant symbols 0, 1). Let Q = the rationals under the usual interpretation of these symbols, and
R = the reals under the usual interpretation of these symbols. Then Q 6≺ R because the sentence
∃x x2 = 2 is true in R but not in Q.

Here’s a positive example: Again, consider the language of fields, and note that every sentence in
this language is equivalent to some kind of quantified polynomial equation in several variables. For
example ∃x∀y∃z xyz = x3+y2+z is such a sentence (and a true one at that: let x = 0, z = −y2). Let
Q∗ be the algebraic closure of Q, and let C = the complex numbers under the usual interepretation..
Then, by definition of algebraic closure, Q∗ ≺ C.

Definition 37. Let θ be a cardinal. H(θ) = {x : |TC x| < θ}.
25i.e., each Pα 
 Q̇α is proper
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I.e. H(ω) = {x : |TC x| is finite} = Vω. This is a special case of: if κ is strongly inaccessible,
then H(κ) = Vκ. In general, H(θ) 6= Vθ. For example, P(ω) ∈ Vω1 \H(ω1).

We are interested in countable elementary submodels of H(θ)’s. It is important to realize that
these models have major gaps — they are very far from transitive.

Here’s an example of such a gap. If M is a countable elementary submodel of some H(θ) where
θ > ω1, then ω1 ∈M (because ω1 is definable), but clearly ω1 6⊂M . Let δM = ω1 ∩M ⊂M . Then
by definition δM = supω1 ∩M , δM ⊂ M . But δM /∈ M , since if δM ∈ M then by elementarity
M |= δM is countable, so δM ∈ M ∩ ω1 = δM , a contradiction. In fact, since M |= ω1 = sup{α : α
a countable ordinal}, [δM , ω1) ∩M = ∅.

Let’s relate section 18.2 to section 18.1: By basic facts of model theory, for all cardinals θ >
ω {M : M countable, M ≺ H(θ)} is club in [H(θ)]ω, and {M ∩ θ : M countable, M ≺ H(θ)} is
club in [θ]ω.

Exercise Prove the preceding statement using the following facts from model theory: If x ∈
H(θ) and M ≺ H(θ) then there is N ≺ H(θ) with x ∈ N,M ⊂ N and |M | = |N |26; if x ∈ [H(θ)≤|M |

and M ≺ H(θ) then there is N ≺ H(θ) with M ∪ x ⊂ N and |M | = |N |; if {Mn : n < ω} is an
increasing sequence of elementary submodels of some H(θ) then

⋃
n<ωMn ≺ H(θ).

Which Hθ’s are we interested in? That depends on the context.

Definition 38. Let P = (P,≤) be a partial order. We say that θ is sufficient for P iff P(P ) ∈ H(θ).

Note that if P(P ) ∈ H(θ) then so is every subset of P and every subset of P 2 (hence ≤). This
means that H(θ) knows everything that V knows about P . For example, every subset of P is an
element of H(θ), and if D ⊂ P , then the sentence ∀p ∈ P∃q ∈ D q ≤ p holds in H(θ) iff it holds
in V . I.e. (and crucially) H(θ) |= D is dense in P iff V |= D is dense in P. Finally, H(θ) can
well-order the dense subsets of P.

Now suppose P ∈ M ≺ H(θ) where θ is sufficient for P. Suppose D ∈ M is dense in P. Then,
even though D need not be a subset of M , M |= ∀p ∈ P∃q ∈ D q ≤ p. Let’s unpack this: for all
p ∈ P ∩M∃q ∈ P ∩M ∩D q ≤ p.

If P = (P,≤) ∈M we write PM = (P ∩M,≤ |P∩M ) — this is what M thinks P is.27

Some quick examples (where M denotes a countable elementary submodel of some H(θ)):

• If θ > 2ω then θ is sufficient for Fn(ω, 2, ω). Because it is definable Fn(ω, 2, ω) ∈ M for all
M ≺ H(θ), and Fn(ω, 2, ω) ⊂ M — this is essentially the only example where a separative
partial order is a subset, since no uncountable partial order can be a subset of M .

• if θ > 2ω1 , then it is sufficient for Fn(ω1, 2, ω) and again by definability Fn(ω1, 2, ω) ∈M for
all M ≺ H(θ). Fn(ω1, 2, ω)M = Fn(M ∩ ω1, 2, ω).

• Let S = Sacks forcing. If θ > 2c then θ is sufficient for S and, again by definability, S ∈ M
forall M ≺ H(θ). But, since M is countable and |S| = c, SM falls far short of the real S.

• Let S = (ω1,≤) be a Suslin tree, and let P = (ω1,≥), i.e., the forcing that adds an uncountable
branch to S. Then any θ > 2ω1 is sufficient for S, but note that since S is not definable it is
not automatically an element of every M ≺ H(θ). 28

26note: x could equal M
27note that if (a, b) ∈ M and a, b ∈ H(θ) then by elementarity a ∈ M and b ∈ M since M |= (a, b) is an ordered

pair — working out the details is a good exercise.
28If V |=6 ∃ Suslin tree, then this is moot, although since “∃ a Suslin tree” is consistent, there will be countable
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18.3 Generic conditions

From now on, when we say that M is an elementary submodel, it is understood that it is an
elementary submodel of some H(θ) where θ is sufficient for a relevant P with P ∈ M (hence in
H(θ)).

Definition 39. Let M be a countable elementary submodel, q ∈ P ∈ M . q is M -generic iff ∀D
pre-dense in P D is pre-dense below q, i.e., ∀r ≤ q∃p ∈M ∩D p, r are compatible.

Note that q itself does not necessarily code a generic filter over M , i.e. it is not true that for
every dense D ∈ M∃p ∈ D ∩M p ≤ q. Also, q need not be an element of M . Finally, note that if
r ≤ q and q is M -generic, so is r.

Definition 40. Let M be a countable elementary submodel, P ∈ M . A filter G is M -generic iff
∀D ∈M with D dense, G ∩D ∩M 6= ∅.

Fact 29. Let M be a countable elementary submodel, P ∈ M . q is M -generic iff ∀r ≤ q∃G M -
generic, r ∈ G.

Proof. Necessity is obvious. For sufficiency: Given r ≤ q we construct an M -generic filter G with
r ∈ G, as follows: list {D ∈ M : D dense} as {Dn : n < ω}. Fix r ≤ q. Let p0 ∈ D0 ∩M be
compatible with r, r0 ≤ r, p0. Given rn ≤ rn−1 and pn ∈ Dn with rn ≤ pn, let pn+1 ∈ Dn+1 ∩M
be compatible with rn, and let rn+1 ≤ pn+1, rn. In this way we construct a descending sequence
r ≥ r0 ≥ r1... and a sequence of pn’s with pn ∈ Dn ∩M.pn ≥ rn. Let G = {q : ∃n q ≥ rn}. G is a
filter meeting each Dn ∩M and r ∈ G.

Note that G /∈M . Similarly we have

Fact 30. Let M be a countable elementary submodel, P ∈M, Ġ names the P-generic filter over V .
q is M -generic iff q 
 Ġ ∩M is P ∩M -generic over M .

Proof. q 
 Ġ∩M is P∩M -generic over M iff ∀r ≤ q ris compatible with Σ(M∩D) for all D ∈M,D
pre-dense below q iff q is M -generic.

Fact 31. Let M be a countable elementary submodel, q ∈ P ∈M . Then q is M -generic iff ∀α̇ ∈M
if q 
 α an ordinal then q 
 ∃β ∈M α̇ = β.

Proof. ⇒: Suppose q is M -generic, α̇ ∈ M, q 
 α̇ ∈ ON . Let D = {p : ∃β p 
 α̇ = β} ∪ {p : p 

α̇ /∈ ON}.D is definable from α̇, and α̇ ∈M , so D ∈M . D is dense, so D ∩M is dense in P ∩M .
Let p ∈ D ∩M,p 
 α̇ ∈ ON . ∃βp p 
 α̇ = βp. Since βp is definable from α̇, p ∈ M,βp ∈ M . Let
r ≤ q so that ∃β ∈ ON r 
 α̇ = β. Since q is M -generic, there is p ≤ q, p ∈ D∩M,p, r compatible.
Hence p 
 α̇ ∈ ON , so p 
 α̇ = βp. By compatibility, β = βp.

⇐: Since H(θ) 
 WO, there is h ∈M h : P→ |P| = κ, h 1-1 onto. Let D ∈M,D predense. Let
α̇ = inf(h[Ġ] ∩ h[D]). Then α̇ ∈M , so q 
 ∃β ∈M β = α̇. Hence q 
 Ġ ∩D ∩M 6= ∅.

Theorem 49. A partial order P is proper iff ∀θ sufficient for P {M : M countable, M ≺ H(θ) and
∀p ∈M there is some M -generic condition q ≤ p} contains a club.

models M |= ∃ a Suslin tree. But none of those models will be elementary submodels of any H(θ)
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Proof. ⇒: Fix p and let {Dα : α < κ} list all dense subsets of P, each Dα = {pβ,α : β < λα}
for some λα. By the contrapositive, we assume N = {M ≺ H(θ) : M countable and there is no
M -generic q ≤ p} is stationary (so its complement contains no club).

Let p ∈ G a P-generic filter over V . There is f ∈ H(θ)V [G], f : κ→ G so each pf(α),α ∈ Dα and
each pf(α),α ≤ p.

Let F = {M countable: M ≺ H(θ)V [G], f ∈M}. By model theory, F is club in [H(θ)V [G]]ω, so
F|H(θ) is club in [H(θ)]ω. We show that N ∩ F|H(θ) = ∅, hence [H(θ)V [G]] |= N is not stationary,
so P is not proper.

Suppose, by way of contradiction, that M ∈ F ,M ∩H(θ) ∈ N ∩ F|H(θ). [H(θ)V [G]] |= ∀α ∈M
if α < κ then pf(α),α ∈ G and f(α) ∈ M (hence pf(α),α ∈ M ∩ H(θ)) — f(α) ∈ M follows from
f ∈ M . This is forced by some r ∈ G, i.e., some r 
 ∀α ∈ M if α < κ then pḟ(α),α ∈ Ġ and

ḟ(α) ∈ M (hence pḟ(α),α ∈ M ∩ H(θ)). Since G is a filter, there is q ≤ p, r. So q 
 ∀α ∈ M if

α < κ then pḟ(α),α ∈ Ġ and ḟ(α) ∈M (hence pḟ(α),α ∈M ∩H(θ)). I.e., q ≤ p and q is M -generic.
But then M ∩H(θ) /∈ N .

⇐: Suppose P satisfies the right-hand side. Fix p ∈ P. Define M = {M countable: p,P ∈
M,M ≺ H(θ),∃q ≤ p q is M -generic}.

Subclaim 1. N = {M [G]| ∩ θ : M ∈M} is club in [θ]ω.

Proof. Let a ∈ [θ]ω ∩ V [G]. There is f ∈ V [G], f : ω → θ, f 1-1, a = range f . We construct
{Mn : n < ω} ⊂ M and {pn : n ≤ ω} where Mn ≺ Mn+1, pn ∈ G ∩Mn, pn 
 ḟ(n) ∈ Mn. Let
M =

⋃
{Mn : n < ω}. M ∈ M by M club. But by construction a = range f ⊂ M [G] Hence N is

unbounded. The proof that N is closed is similar.

By fact 41, if M ∈ M and q is M -generic, then q 
 M [Ġ] ∩ θ = M ∩ θ. By hypothesis, M is
club, so M|θ is club. Let S be stationary in [θ]ω, and suppose C club in [θ]ω, C ∈ V [G]. Without
loss of generality, C ⊂M|θ. We want to show S ∩ C 6= ∅.

We construct the function f ∈ V [G] as follows: f : C → θ, f(c) = sup c ∈ θ.
There is M ∈ M, ḟ ∈ M (hence f ∈ M [G]),M ∩ θ ∈ S. Let q ≤ p, q is M -generic. Then

q 
 M ∩ θ = M [G] ∩ θ and q 
 ḟ←[θ] is club in M [Ġ]. By the latter, q 
 if γ ∈ M ∩ θ then there
is ċ ∈M [Ġ] γ ∈ c, ḟ(ċ) > γ.29

We only consider G with q ∈ G. In V let {βn : n < ω} = M ∩ θ. In V [G] there is a sequence
{αn : n < ω} cofinal in M ∩ θ where each αn ∈ M ∩ θ, and there is cn ∈ M [G] ∩ f←(αn) (hence
cn ⊂ M) where βn ∈ cn ⊂ cn+1, and M ∩ θ =

⋃
n<ω f

←(αn). Each cn ∈ C, so, since C is club,
M ∩ θ ∈ C. Since M ∩ θ ∈ S, we are done.

Theorem 49 is the tool we use to prove partial orders proper, so let’s do it.

Fact 32. Countably closed partial orders are proper.

Proof. Let P be countably closed, P ∈ M ≺ H(θ), θ > |P|,M countable. Let {Dn : n < ω} list all
dense subsets D of P with D ∈ M . Let p ∈ M ∩ P. By elementarity we construct a descending
sequence {pn : n < ω} with each pn ≤ p, each pn ∈ Dn. Let q be a lower bound for all pn. Then if
r ≤ q pn ≤ r and pn ∈ Dn, so q is M -generic.

29because M ≺ H(θ) and this is true if you substitute V for M (hence H(θ) for M)
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Fact 33. Ccc partial orders are proper.

Proof. Let P be ccc, P ∈M ≺ H(θ), θ > |P|,M countable. Let A ∈M,A a maximal antichain in P,
hence A pre-dense.30 Because P is ccc, A is countable, so ∃f : ω → A, f onto. Hence ∃f ∈M M |=
f : ω → A, f onto. Since ω ⊂ M , and enough of replacement holds in H(θ), A ⊂ M . So every
q ∈ P is M -generic, since every element of P is compatible with some element of A = A ∩M .

An immediate corollary of the preceding two facts and fact 28 is that Mathias forcing is proper.

Fact 34. Sacks forcing is proper.

Proof. . Let S = Sacks forcing, S ∈ M ≺ H(θ), θ > c,M countable. Let {Dn : n < ω} list
{D ∈M : D predense in S}. Let p ∈ S. We construct an M -generic q ≤ p.

Let q∅ ∈ D0∩M.q0 ≤ p. Suppose we know qσ ∈ D|σ|. For i < 2 let qσ_i ≤ qσ, qσ_i ∈ D|σ|+1∩M
where qσ_0⊥qσ_1.

Let q ≤
⋂
n<ω

⋃
|σ|=n qσ. In the section on Sacks forcing we proved that q ∈ S. If r ≤ q then

for all n < ω there is σ with |σ| = n and r, qσ compatible. Since qσ ∈ Dn ∩M , this completes the
proof that q is M -generic.

30recall that it suffices to consider predense sets which are maximal antichains
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19 No S space — a case study in applied set theory

In this section we will give the proof of Todorcevic’s theorem:

Theorem 50. Cons(∃ no S space).

19.1 Reduction to set theory

Definition 41. An S space is a regular hereditarily separable Hausdorff space which is not heredi-
tarily Lindelöf.

The above definition has four technical topological terms: regular, Hausdorff, hereditarily sepa-
rable, hereditarily Lindelöf. And, of course, underlying everything is a fifth term: the notion of a
topology. So our first task is to remove the topology and turn the question into a question about
sets, in this case, families of countable sets.

Definition 42. (a) A topology on a set X is a family τ ⊂ P(X) closed under finite intersection
and arbitrary union, with X, ∅ ∈ τ . We call u ⊂ X open iff u ∈ τ ; closed if X \ u ∈ τ . (The most
familiar example is the collection of open subsets of R). Given a topology τ on X and Y ⊂ X, the
subspace topology on Y consists of all u ∩ Y, u ∈ τ .

(b) A topology is Hausdorff iff for any x 6= y ∈ X there are open disjoint u, v with x ∈ u,H ⊂ v.

(c) A topology is regular iff for any x /∈ H closed there are open disjoint u, v with x ∈ u, y ∈ v. (d)
A topology is separable iff it has a countable set D so that every open set has non-empty intersection
with D — D is called dense. (R is the most familiar example of a separable space.) A topology is
hereditarily separable iff every subspace is separable. (Note that R is hereditarily separable.

(e) A topology is Lindelöf iff every covering by open sets has a countable subcovering. It is hered-
itarily Lindelöf iff every subspace is Lindelöf. (Again, R is Lindelöf, in fact hereditarily Lindelöf.)

Now let’s reduce the problem of “no S space” to a problem in set theory. Suppose (X, τ) is an
S space.

1. Since it is not hereditarily Lindelöf, we can assume (by possibly moving to a subspace) that
it is not Lindelöf.

2. Hence we can find a sequence of points {xα : α < ω1} and a sequence of open sets {uα : α <
ω1} where xα ∈ uα and if β < α then xα /∈ uβ.

3. Let’s just consider the subspace X∗ = {xα : α < ω}. It is Hausdorff, regular, and hereditarily
separable because these properties are inherited by subspaces.

4. Each uα∩X∗ is countable. This means that X∗ has a base of countable open sets. Combined
with regularity, this means that X∗ has a base of countable clopen (= closed and open) sets.

5. In a standard move, we identify X with ω1 under the map xα 7→ α.

Hence, if there is an S space there is one with the following properties:

1. It is a topology on ω1

51



2. Each α ∈ uα clopen where uα ⊂ α+ 1

We call such a space a right-separated 0-dimensional topology on ω1. It translates into the
following: a space generated by a Boolean algebra generated by a family {uα : α < ω1} satisfying
(2).31 All we really care about is the Boolean algebra. A little more topology and we’ll have our
set-theoretic reduction.

Definition 43. A subspace Y ⊂ X is discrete iff for all y ∈ Y there is open uy with {y} = Y ∩ uy.

For example, Z is a discrete subspace of R.

Fact 35. A right-separated topology topology on ω1 is hereditarily separable iff it has no uncountable
discrete subspace.

Proof. ⇒: An uncountable discrete space is necessarily not hereditarily separable.

⇐: Suppose (ω1, τ) is right-separated , and Y is a non-separable subspace. Then for all E ∈ [Y ]ω

there is uE countable open, uE ∩ Y 6= ∅, uE ∩ E = ∅. We construct an increasing sequence of
countable sets {Eα : α < ω1} and points xα ∈ uEα where Eα+1 = Eα ∪ uEα and if α is a limit then
Eα =

⋃
β<αEβ. Let Y = {xα : α < ω1}. But then each uEα ∩ Y = {xα}, so E is discrete.

So our task is the following: Given a right-separated 0-dimensional topology on ω1, force an
uncountable discrete set. Do it with a proper forcing so we can iterate through all potential S
spaces. And do it in a way that does not necessitate the use of large cardinals.

The following fact will prove useful:

Fact 36. A right-separated 0-dimensional topology on ω1 has an uncountable discrete subspace iff
it has an uncountable subspace Y so every initial segment of Y is clopen in Y .

Proof. ⇒: Every subset, hence every initial segment, of a discrete space is clopen.

⇐: Suppose Y ∈ [ω1]ω1 so that each Y ∩α = Y ∩uα where uα is clopen. Let Y = {βα : α < ω1}
in increasing order. Then each {βα+1} = Y ∩ (uα+2 \ uα+1), which is open in Y .

31the Boolean algebra generated by a family U of subsets of X with X ∈ U is simply the closure of U under finite
union, finite intersection, and relative complement
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19.2 Destroying one S space

Basic Hypothesis 1. τ is a right-separated 0-dimensional S topology on ω1 and, for each α, uα
is clopen with α ∈ uα ⊂ α+ 1.

Define Pτ to be the set of all p ∈ [ω1]<ω so that

1. if β < α ∈ p then β /∈ uα

2. {β : p ∩ uβ = ∅} is uncountable

Forcings of the form Pτ will be called canonical no-S forcings.

We want to show that if G is a Pτ generic filter, then
⋃
G is a cofinal discrete set in (ω1)V .

To do this we need:

Claim 1. Fix x ∈ [ω1]<ω and suppose Zx = {β : x ∩ uβ = ∅} is uncountable. Define β ∈ Zx to
be good iff {γ ∈ Zx : (x ∪ {β}) ∩ uγ = ∅} is uncountable. Then there are uncountably many good
points in Zx.

Proof. Note that, by definition of Zx, if β, γ ∈ Zx, β < γ and (x ∪ {β}) ∩ uγ 6= ∅ then β ∈ uγ .

So suppose Zx is uncountable and, by contradiction, there are only countably many good β’s in
Zx. For each not good β ∈ Zx let γβ = sup{γ ∈ Zx : (x ∪ {β}) ∩ uγ = ∅}. γβ < ω1. So there is
Y ∈ [Zx]ω1 so that if β < δ, β, δ ∈ Y , then δ > γβ. Hence if β < δ, β, δ ∈ Y then β ∈ uδ. So Y is
an uncountable subset whose every initial segment is relatively clopen, a contradiction.

Exercise: If G is a Pτ -generic filter, then
⋃
G is an uncountable discrete set in (ω1)V . [Hint:

For discrete, use (1); for uncountable, use (2) and the claim to show that each Dα = {p : p\α 6= ∅}
is dense.]

Thus, if Pτ is ccc, V Pτ 
 τ is not a hereditarily separable topology on ω1. We could iterate
all the Pτ ’s over, say, a model of CH + 2ω1 = ω2 (in which case we would only need to iterate ω2

times) and be done.

The problem is that there are, under, say, CH, S space topologies τ on ω1 for which Pτ is not
ccc. This is a result of Szentmiklóssy, the construction of something called a tight HFD. So we
can’t simply iterate ccc forcings.

And whatever we do, we can’t use forcings which collapse ω1: then each S space we destroyed
would be countable in the end; when we iterate, at the end we have a new ω1 and have to start all
over destroying its topologies...

There are several approaches to the existence of non ccc canonical no-S forcings which preserve
ω1.

The easiest to describe is the following: first force a generic club Ċ by the countably closed
forcing Pclub as we did before. The let Q̇ = {p ∈ Pτ : if α < β ∈ p then ∃γ ∈ Ċ α < γ < β}. It is
easy to show that Pclub ∗ Q̇ forces a discrete subspace which is cofinal in (ω1)V , but not so easy to
show that V Pclub 
 Q̇ is ccc, hence Pclub ∗ Q̇ is proper, hence ω1 is not collapsed.

A second way involves the combinatorial principle TOP, which is fairly complicated to state,
and which implies that if τ is S, then Pτ is ccc. TOP can be proven to be consistent via proper
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forcing without using full PFA, that is, the consistency of TOP can be proven without recourse
to large cardinals, in an iteration which alternates with ccc instances of canonical no-S forcings.
Thus, one way or another, every S space is destroyed.

A third way is to use finite sequences of models to separate elements of the potential discrete
subset.32 This is actually not so different from the first method described, where elements are
separated by a club, but because it is not an iteration the proof that it is proper is easier. So this
is the approach we will take.

This will suffice for a proof under PFA. In the next section we will turn our attention to the
question of iteration: how do we know we can iterate and take care of everything without appealing
to large cardinals?

So let τ, {uα : α < ω1} be as in the basic hypothesis. Define Pτ to be the set of all pairs (xp,Mp)
where

1. xp ∈ Pτ

2. Mp is a finite ∈-chain of countable elementary submodels of H(ω2), i.e., if N,M ∈Mp then
either N ∈Mor M ∈ N .33

3. τ, {uα : α < ω1} ∈M for all M ∈Mp
34

4. ∀α < β ∈ xp ∃M ∈Mp α < ω1 ∩M < β

The order is: p ≤ q iff xp ⊃ xq and Mp ⊃Mq.

Exercise If G is a Pτ -generic filter, then
⋃
p∈Ġ xp is discrete, cofinal in (ω1)V .

By the exercise, it suffices to show that Pτ is proper.

Let θ be sufficient for Pτ ,M a countable elementary submodel of θ with τ, {uα : α < ω1},Pτ ∈M .
Fix p ∈M . Define q = (xp,Mp ∪ {M ∩H(ω2)}).

Claim 2. q is M-generic.

Before proving the claim, some definitions: Fix m < ω.

• If s ∈ [ω1]m we write s = {αi : i < m} in increasing order. For k ≤ m, s|k = {αi : i < k}.

• If S ∈ [ω1]m and k < m we write S|k = {s|k : s ∈ S}

• If S ∈ [ω1]m we say S is ω1-branching iff ∀k < m ∀s ∈ S|k {β : s∪{β} ∈ Sk+1} is uncountable.

Suppose τ ∈ M a countable elementary submodel of H(ω2), S ∈ M where S is ω1-branching,
and s ∈M ∩ S|k for some k < m. What can we conclude?

• M |= {β : s ∪ {β} ∈ S|k+1} is uncountable.

• Hence M |= ∃Y a countable dense subset of {β : s ∪ {β} ∈ S|k+1}.
32this turns out to be highly suggestive, that is, using finite sequences of models as part of the forcing condition is

useful elsewhere
33by definition of ≺, if M ∈ N and M,N ≺ H(θ) for some θ then M ≺ N
34note that we can’t require Pτ ∈M — that would be too self-referential
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• So ∃Y ∈M M |= Y a countable dense subset of {β : s ∪ {β} ∈ S|k+1}.

• So H(ω2) |= Y a countable dense subset of {β : s ∪ {β} ∈ S|k+1}.

• So Y really is a countable dense subset of {β : s ∪ {β} ∈ Sk+1}.

• Since Y is countable, Y ⊂M .

Hence if s ∈ M ∩ S|k and and u countable clopen then there is infinite countable Y ∈ M,M ⊃
Y, Y \ u 6= ∅, s ∪ {β} ∈ Sk+1 for all β ∈ Y . The important fact here is that u need not be in M .

This is the essential combinatorics (in fact a bit stronger than necessary) we need.

Subclaim 2. Let r ≤ q, r∗ = r ∩M where M is a countable elementary submodel, and xr = xr∗.
If s ≤ r∗ with s ∈M , then s, r are compatible.

Proof. Let w = (xs,Ms ∪Mr). By hypothesis, xw ⊃ xr; by definition Mw ⊃ Mr, so if w ∈ Pτ
then w ≤ r.

xs ∈ Pτ since s ∈ Pτ . And xs is separated byMs, so byMw. We need to check that if N ∈Ms

and N∗ ∈Mr \Ms then N ∈ N∗.
M ∩H(ω2) ∈Mq, hence Mr. Since s ∈M ∩H(ω2),Ms is a finite subset of M ∩H(ω2), and if

N∗ ∈ Mr \Ms then either N∗ = M ∩H(ω2) or M ∩H(ω2) ∈ N∗. In either case, by definability,
N ∈ N∗.

We are ready to prove the claim.

Proof. Let r ≤ q,D dense open in Pτ , D ∈ M . By density, we may assume r ∈ D. Define
r∗ = r ∩M,x = xr \M,n = |x|. If n = 0, xr = xr∗ , so by extending r∗ to some rs ∈ D ∩M , by the
subclaim we have s compatible with r and are done.

So assume n ≥ 1 and define T = {a ∈ [ω1]n : ∃s ∈ D, s ≤ r∗ xs \ xr∗ = a}. T ∈M .

Subclaim 3. T is ω1-branching.

Proof. Fix a ∈ T, k < n. a = {αi : i < n} and, since a = xs \ xr∗ for some s, there is an
elementary chain of models {Mi : i < n} where each αi ∈ Mi and each αi+1 /∈ Mi. Suppose
Ea,k = {β : a|k ∪ {β} ∈ T |k+1} is countable. Then Ea,k ∈ Mk so supEa,k < ω1 ∩ Mk. But
αk+1 ∈ Ea,k and αk+1 ≥ ω1 ∩Mk, a contradiction.

Define u =
⋃
γ∈x uγ . Let T̂ = {a|k : a ∈ T, k ≤ n}. Define X0 = {α : {α} ∈ T̂}. X0 ∈M . X0 is

uncountable. There is Y0 ∈ [X0]ω ∩M with Y0 dense in X0, hence there is α0 ∈ Y0 \ u (because u
is countable clopen).

Let X1 = {α : {α0, α} ∈ T̂}. X1 ∈ M . There is Y1 ∈ [X1]ω ∩M with Y1 dense in X1, hence
there is α1 ∈ Y1 \ u.

Etc. For each k < n we construct αk /∈ u with {αi : i ≤ k} ∈ T̂ , αk ∈M .

Let a = {αi : i < n}. a ∈ T ∩M . So there is s ∈ D ∩M, s ≤ r∗, a = xs \ xr∗ .
Since a ∩ u = ∅, s, r are compatible.
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By the claim, Pτ is proper. Hence it adds an uncountable discrete subspace. So τ is no longer
an S space.

I.e., given an S space we can destroy it with proper forcing. What about destroying all S spaces?

Under PFA we are done. But PFA involves large cardinals, and we want a consistency result
with just ZFC.

So we turn our attention to iteration. Suppose CH + 2ω1 = ω2 holds in the ground model.
Suppose forcing with a countable iteration of Pτ ’s of length α with |α| ≤ ω1 preserves CH +
2ω1 = ω2. Then we can enumerate all names of potential S spaces in intermediate models in a
sequence of length ω2, and destroy each in a countable support iteration of length ω2. Which will
complete the proof of “there are no S spaces.”

But unfortunately the second hypothesis fails: V Pτ 
 |(ω2)V | = ω1. The next section shows
what goes wrong and how to fix it.

19.3 Iterating without large cardinals

First, let’s see what goes wrong.

Claim 3. Let N ∈M,N ≺M ≺ H(ω2), N,M countable. Then ω1 ∩N ∈M .

Proof. N ∈M,ω1 ∈M , so ω1 ∩N ∈M .

Under the hypothesis of the claim, ω1 ∩N < ω1 ∩M

Fact 37. Let Pτ be as in the previous section, where τ is an S space topology. V Pτ 
 |(ω2)V | = ω1.

Proof. Fix δ < ω1 and let Nδ = {N ≺ H(ω2) : τ, {uα : α < ω1} ∈ N and ω1 ∩ N = δ}. By
the preceding claim, each |Mp ∩ Nδ| ≤ 1, and if ∅ 6= Mp ∩ Nδ 6= Mq ∩ Nδ 6= ∅, then p, q are
incompatible.

For α < ω2 define Dα = {p : sup
⋃
Mp > α}. Each Dα is dense.

Let G be a Pτ -generic filter. Then G ∩ Dα 6= ∅ for each α < ω2. Define M =
⋃
p∈G

⋃
Mp.

Then M,N ∈ M ⇒ ω1 ∩ N 6= ω1 ∩M . Define the function f ∈ V [G] as follows: for M ∈ M,
f(ω1 ∩M) = sup(ω2 ∩M). f is a partial function from a cofinal subset of ω1 to a cofinal subset of
ω2. (Exercise: why?) Hence f collapses ω2 to ω1.

So we have to change the partial order.

Given τ, {uα : α < ω1} as in the basic hypothesis, define N =
⋃
α<ω1

Nδ, and define Qτ to be
the set of all p = (xp, ep) where

1. xp ∈ Pτ

2. each element of ep is N ∩ ω1 for some N ∈ N .

3. τ, {uα : α < ω1} ∈ N for all N ∈ N

4. ∀α < β ∈ xp ∃γ ∈ ep α < γ < β
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Note that the proof of subclaim 3 goes through, since it never uses Mi ∈ Mi+1, so T is ω1-
branching. Since a, r∗ ∈ N ⇒ T ∈ N , we don’t use ε-chains in our proof of proper. So, similar to
the proof that Pτ is proper, we have

Exercise: Qτ is proper.

|Qτ | = ω1, so clearly has the ω2-cc, hence doesn’t collapse cardinals ≥ ω2. Being proper, it
doesn’t collapse ω1. So it doesn’t collapse cardinals.

Let’s see what happens when we iterate.

An element of Qτ is a subset of ([ω1]<ω)2, so all of the elements of the next Qτ̇ in the iteration are
still named by ω1 objects in the ground model.35. So an element of the countable support iteration
of length γ will look like a function p : γ → ([ω1]<ω)2 where only countably many p(α) 6= (∅, ∅).

Assume V |= CH +2ω1 = ω2. By CH, an iteration P of length ω2 will thus have size |[ω2]ω|ω1 =
ω2, and for γ < ω1, |Pγ | = ω1.

By the generalized ∆-system lemma, ω2 many conditions in P cannot be an antichain. (The
proof is a good exercise in using the generalized ∆-systems lemma.) So P has the ω2-cc. We already
know it is proper. Hence it does not collapse cardinals.

Since |Pγ | = ω1, then V Pγ 
 CH + 2ω1 = ω2

And 2ω1 = ω2 ⇒ |{τ : τ is an S space topology on ω1}| ≤ ω2.

So at each stage γ < ω2, ∃{τ̇γ,α : α < ω2} V Pγ 
 if τ̇ is an S space topology on ω1 then there is
α with τ̇ = τ̇γ,α.

Let ϕ : ω2 → (ω2)2 where if ϕ(γ) = (β, α) then β ≤ γ. At stage γ + 1 we consider the topology
τ̇ϕ(γ). If Pγ 
 τ̇f(γ) is S, we force with Qτ̇f(γ) . Otherwise we do nothing.

In this way, we consider every possible S space topology that arises, and destroy each one. We
do it without collapsing cardinals. The proof of “Cons(∃ no S space)” is complete.

Final note on proof: In other forcings using finite ∈-chains of models, the move to simply consider
finite sequences of ω1 ∩M ’s won’t work, since more about the models is used than simply the first
missing ordinal. The fix instead moves from considering a chain M0 ∈M1 ∈ ... ∈Mk to considering
finite sets of countable elementary submodels M0,M1, ...Mk where every element in Mi has the
same transitive collapse (including the same ω1 ∩M), and we can find chains M0 ∈M1 ∈ ... ∈Mk

where each Mi ∈Mi. When we extend a condition, we are allowed to add finitely many models to
each Mi. Details are, as they say, left to the reader.

35of course from the standpoint of the ground model we don’t know exactly which ones, since we add objects to
H(ω2) as we iterate

57


