1. (10 points) Find the domain for the function

\[f(x) = \frac{x}{4 - x^2} \]

2. (10 points) 1. People are willing to pay \(100 - \sqrt{x} \) dollars for a limited edition etching, where \(x \) is the number sold. What is the domain of \(x \)?

3. (15 points) Find

(a) \[\lim_{x \to \infty} \frac{x + 3}{x^2 - 9} \]

(b) \[\lim_{x \to 7} \frac{x - 7}{x^2 - 49} \]

(c) \[\lim_{x \to 3} \frac{x^3 - 8}{x - 3} \]

4. (10 points) Let \(f(x) = x^2(x + 1) \). Find the equation of the line tangent to the curve \(f(x) \) at \(x = 1 \) without using the rules of differentiation.
5. (10 points) Determine all values of x, if any, for which \(f(x) \) is discontinuous.

\[
f(x) = \begin{cases}
 x + 1, & x \leq 1 \\
 -x^2 + 4x - 1, & x > 1
\end{cases}
\]

6. (15 points) The graph of a function \(f \) is sketched below

(i) Find the points at which \(f \) has no limit; explain your reasoning.

(ii) Find the points at which \(f \) is not continuous; explain your reasoning.

(iii) Find the points at which \(f \) has no derivative; explain your reasoning.
7. (10 points) If the price of a product per item is given by \(p(x) = x^2 + 2x + 4 \) and the total cost function is given by \(C(x) = 8 + x \) where \(x \) is the number of items produced and sold. Find the profit function \(P(x) \). What is the profit when the production and sales are \(x = 6 \)?

8. (10 points) Suppose an egg is thrown straight upward from the ground with initial velocity 96 feet/second and the egg’s height at time \(t \) is given by the function \(s(t) = 96t - 16t^2 \). Find the velocity at any time \(t \) without using the rules of differentiation. What is the velocity of the egg when \(t = 3 \) seconds?

9. (10 points) The monthly demand and supply functions for the Luminar desk lamp are given by \(p = d(x) = -1.1x^2 + x + 40 \) and \(p = s(x) = 0.1x^2 + 15 \) respectively, where \(p \) is measured in dollars and \(x \) in units of a thousand. Find the equilibrium quantity and price.