1. (a) Compute the line integral of the vector field \(\mathbf{F} = (3x^2y, x^3 + 3y^2) \) along the segment from (1, 1) to (2, 2) by direct computation.

(b) Show that \(\mathbf{F} = (3x^2y, x^3 + 3y^2) \) is a conservative vector field.

(c) Find a potential for \(\mathbf{F} = (3x^2y, x^3 + 3y^2) \).

(d) Compute the line integral of the vector field \(\mathbf{F} = (3x^2y, x^3 + 3y^2) \) along any curve from (1, 1) to (2, 2).

2. (a) Consider the vector field \(\mathbf{G}(x, y) = (2y + x^3, x) \). Show that \(\mathbf{G} \) is not conservative.

(b) Compute the line integral \(\oint_C \mathbf{G} \cdot d\mathbf{x} \), where the curve \(C \) is the boundary of the square \([0, 1] \times [0, 1]\) oriented counterclockwise.

3. Consider the curve \(\gamma \) given by the three sides of the triangle from (0, 0) to (1, 0) to (0, 1) oriented counterclockwise. Show that

\[
\int_\gamma (-xy + \sin x^2) \, dx + \cos y^2 \, dy = 1/6.
\]

4. Show that the line integral of \(\mathbf{F} = (x/(x^2 + y^2), y/(x^2 + y^2)) \) along any closed curve that does not have the point (0, 0) in its interior is zero.

5. Let \(\mathbf{F} \) and \(\mathbf{G} \) are vector fields in \(\mathbb{R}^3 \) (appropriately differentiable). Show that

\[
\text{div}(\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot \nabla \times \mathbf{F} - \mathbf{F} \cdot \nabla \times \mathbf{G}.
\]

6. Compute the flux of the vector field \(\mathbf{F}(x, y, z) = (x, y, z) \) across the sphere of radius one in the direction to the normal pointing to the inside.

7. Let \(S \) be the parametric surface given by

\[
\mathbf{X}(x, z) = (x, x^3 + z, z),
\]

for \(0 \leq x \leq 2 \) and \(0 \leq z \leq 3 \).

(a) Find the equation of the tangent plane to surface \(S \) at the point (1,2,1).

(b) Set up an integral to compute the area of the parametric surface \(S \). DO NOT COMPUTE THE INTEGRAL.

8. (a) Compute the unit normal vector \(\mathbf{n} \) pointing to the outside at each point of the cylinder given by

\[
\mathbf{X}(u, v) = (\cos u, \sin u, v)
\]

for \(0 \leq u \leq 2\pi, 0 \leq v \leq 1 \).
(b) Compute the flux of the vector field \mathbf{F} across the cylinder S of part (a),

$$\text{FLUX} = \int \int_S \mathbf{F} \cdot d\mathbf{S},$$

where

$$\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}.$$

9. Compute

$$\int \int_S z^3 dS$$

where S is the sphere of radius one centered at the origin.

10. Consider the paraboloid M given by $z = 1 - (x^2 + y^2)$ for $0 \leq x^2 + y^2 \leq 1$.

(a) Write a parametrization of M of the form $\mathbf{f}(x, y) = (x, y, h(x, y))$.

(b) Compute the unit normal to the surface M, "pointing up".