Finite F-type and F-abundant modules
H. Dao and T. Se

Introduction
F-finite Rings
Modules of Finite F-type
F-abundant Pairs and Modules
The Category FT
Geometric Applications

Finite F-type and F-abundant modules

Hailong Dao and Tony Se

Department of Mathematics,
University of Kansas

February 20, 2015
Commutative Algebra Seminar
University of Utah
Let \((R, \mathfrak{m}, k)\) be a Noetherian local ring of dimension \(d\) and prime characteristic \(p\).

We consider the Frobenius map
\[
\varphi: R \to R
\]
given by \(r \mapsto r^p\).

- \(\varphi\) is a ring homomorphism.
- If \(R\) is reduced, then \(\varphi\) is injective.
- We define \(\varphi^e = \varphi^{e-1} \circ \varphi\) for \(e > 0\).
The Frobenius Map

The Frobenius map is widely used in characteristic p methods. It is difficult to keep track of all subjects that use characteristic p methods, but here are some areas that are more or less related to our recent work:

- Hilbert-Kunz multiplicity
- Tight closure
 - Hochster-Huneke
- Rings of differential operators
 - Smith-van den Bergh
- Singularities of R
 - Auslander, Huneke-Leuschke
- F-purity and F-regularity
- Finite F-representation type, F-contributors
 - Smith-van den Bergh, Huneke-Leuschke, Yao
- F-signature
 - Huneke-Leuschke, Yao, Tucker, Blickle-Schwede-Tucker
Two Functors

- For any \(e \geq 0 \), \(R^{p^e} \) is a subring of \(R \). Then \(R \) is an \(R^{p^e} \)-module via the inclusion \(R^{p^e} \hookrightarrow R \).
- Let \(eR \) be the \(R \)-module as follows. The underlying abelian groups of \(R \) and \(eR \) are the same. Scalar multiplication is given by \(r \cdot s = r^{p^e}s \).
- Now suppose that \(R \) is reduced. Then we can identify the map \(R^{p^e} \hookrightarrow R \) with \(R \hookrightarrow R^{1/p^e} \) via \(\varphi^e \), so that \(R^{1/p^e} \) is an \(R \)-module.
- We then have three equivalent notions: the \(R^{p^e} \)-module \(R \), the \(R \)-module \(eR \) and the \(R \)-module \(R^{1/p^e} \).

Now let \(M \) be an \(R \)-module. There are several module structures that arise from \(\varphi \).

- Let \(eM \) be the \(R \)-module as follows. The underlying abelian groups of \(M \) and \(eM \) are the same. Scalar multiplication is given by \(r \cdot m = r^{p^e}m \).
- \(e- \) is called the Frobenius functor (restriction of scalars) and is exact.
- Let \(F^e(M) = M \otimes_R eR \). Then there are three possible ways to view \(F^e(M) \) as an \(R \)-module: multiplication from the left, multiplication from the right via the inclusion \(R \hookrightarrow eR \), or multiplication from the right by identifying \(eR \) with \(R \). We will consider the last \(R \)-module structure.
- \(F^e(-) \) is called the Peskine-Szpiro functor (extension of scalars).
We will now assume that R is reduced and F-finite, i.e. $^e R$ is a finitely generated module over R, or equivalently, $R^{1/p}$ is a finitely generated module over R. Suppose temporarily that k is perfect.

Example
Let $k = \mathbb{Z}/p\mathbb{Z}$. Let $R = k[x_1, \ldots, x_n]$ or $k[[x_1, \ldots, x_n]]$. Then R is F-finite. □

For each e, let a_e be the largest integer such that $^e R = R^{ae} \oplus R_e$.

Definition (Smith-van den Bergh, Huneke-Leuschke)
The F-signature of R is defined to be

$$s(R) = \lim_{e \to \infty} \frac{a_e}{p^{ed}}$$

The notion of F-signature first appeared in a paper by Smith and van den Bergh and was formalized by Huneke and Leuschke. Tucker proved that the limit $s(R)$ always exists.
F-splitting dimension

Now assume that k is not necessarily perfect.

Definition (Yao)
Let $\alpha(R) = \log_p[k : k^p]$. Then the *F*-signature of R is defined to be

$$\lim_{e \to \infty} \frac{a_e}{p^{e(d + \alpha(R))}}$$

Next, we have a similar definition.

Definition (Aberbach-Enescu,Blickle-Schwede-Tucker)
The largest integer k such that

$$\lim_{e \to \infty} \frac{a_e}{p^{e(k + \alpha(R))}} > 0$$

is called the *F*-splitting dimension of R, and is denoted $sdim(R)$.

The *F*-splitting dimension of R was defined as a lim inf by Aberbach and Enescu. They also defined the splitting prime $\mathcal{P}(R)$ of R. Blickle, Schwede and Tucker proved that if $sdim(R) \neq -\infty$, then $sdim R = \dim(R/\mathcal{P}(R))$.
Result 1

Proposition
Assume the following for R:

1. R is equidimensional;
2. R_P is C-M for all $P \in \text{Spec } R \setminus \{m\}$; and
3. $\text{sdim } R > 0$.

Then R is Cohen-Macaulay.

Sketch of proof.

- $H_m^i(R)$ has finite length.
- $e H_m^i(R) = H_m^i(e R)$
- The equality

$$
\frac{1}{p^e} \lambda_R(H_m^i(R)) = \frac{a_e}{p^{e(1+\alpha(R))}} \lambda_R(H_m^i(R)) + \frac{1}{p^{e(1+\alpha(R))}} \lambda_R(H_m^i(R_e))
$$

shows that $\lambda_R(H_m^i(R)) = 0$ for $0 \leq i < d$.

This result is probably well-known to experts already, but it gives us a taste of our results and the techniques used.
Result 2

Lemma

Let M, N be R-modules such that $^eM = N^{be} \oplus P_e$ and

$$
\lim_{e \to \infty} \inf \frac{b_e}{p^{e(k+\alpha(R))}} > 0.
$$

Then $\text{depth } N \geq k$. In particular, if $k = \dim(M)$, then N is Cohen-Macaulay.

This result is similar to a result by Yao on F-contributors.

Remark

It is already known that $\text{sdim } R = d \Rightarrow R$ is strongly F-regular $\Rightarrow R$ is C-M.

Remark

Compare the limit in the lemma with the following definition.

Definition (Aberbach-Enescu)

Let a_e be the largest integer such that $^eM = R^{ae} \oplus M_e$. The largest integer k such that

$$
\lim_{e \to \infty} \inf \frac{a_e}{p^{e(k+\alpha(R))}} > 0
$$

is called the F-splitting dimension of M, and is denoted $\text{sdim}(M)$.
Modules of Finite F-type

From now on, we will work over the category mod(R) of finitely generated R-modules. Let $S \subseteq \text{mod}(R)$. We use $\text{add}_R(S)$ to denote the additive subcategory of mod(R) generated by S.

Let M be an R-module such that $\text{Supp}(M) = \text{Spec}(R)$ and is locally free in codimension 1. (†)

We let $M(e) = (F_R^e(M))^{**}$. Here $-^* = \text{Hom}(-, e^R)$ and $M(e)$ is viewed as an R-module by identifying e^R with R.

Definition

Let M be as in (†). We say that M is of finite F-type if \{M(e)\}_{e \geq 0} \subseteq \text{add}_R(X)$ for some $X \in \text{mod}(R)$. We let $\mathcal{FT}(R) \subseteq \text{mod}(R)$ denote the category of R-modules of finite F-type.

Lemma

Let $S \subseteq \text{mod}(R)$. Then $\text{add}_R(S)$ has finitely many indecomposable objects iff $S \subseteq \text{add}_R(X)$ for some R-module X. Hence for an R-module M, $M \in \mathcal{FT}(R)$ iff only finitely many indecomposable direct summands appear among \{M(e)\}_{e \geq 0}.

Lemma (“Index shifting”)

Let R be (S_2) and M as in (†). Let e, f be nonnegative integers. Then $[M(e)](f) \cong M(e + f)$.
Some Properties

Corollary

Let R be (S_2). Then $M \in \mathcal{F}T(R)$ iff there are $e \geq 0$ and $f > 0$ such that $M(e) \cong M(e + f)$.

Example (Watanabe)

The following R-modules M are of finite F-type.

1. M is a free R-module.
2. Let R be a normal domain and $M = I$, where I is a fractional ideal. Then $M(e) \cong I^{(e)}$, so M is of finite F-type iff $[I]$ is torsion in the class group $\text{Cl}(R)$. Here $I^{(e)}$ is the divisorial hull of the eth power I^e of I.

Proposition

Let R be (S_2). Then $M \in \mathcal{F}T(R)$ implies $M^{**} \in \mathcal{F}T(R)$, and $M, N \in \mathcal{F}T(R)$ implies $M \otimes R N \in \mathcal{F}T(R)$.

Lemma

Let $f : R \rightarrow S$ be a ring homomorphism. Suppose that S is (S_2). Suppose that M_P is free for every $P = f^{-1}(Q)$ such that $Q \in \text{Spec } S$ and $\text{ht}(Q) = 1$. If $M \in \mathcal{F}T(R)$, then $M \otimes_R S \in \mathcal{F}T(S)$.

\[\square \]
F-abundant Pairs and Modules

Definition

(1) Let \(N, L \in \text{mod}(R) \). Let \(b_e \) be maximum such that \(eN = L \oplus b_e \oplus N_e \). We say that \((N, L)\) is an \(F\)-abundant pair if \(\liminf_{e \to \infty} p^{e \alpha(R)} / b_e = 0 \).

(2) Let \(L \in \text{mod}(R) \). We say that \(L \) is an \(F\)-abundant module if \((N, L)\) is an abundant pair for some \(N \).

Example

(a) (Aberbach-Leuschke) If \(s \text{dim } R \geq 1 \), in particular if \(R \) is strongly \(F\)-regular of dimension \(\geq 1 \), then \((R, R)\) is an abundant pair.

(b) (Yao) \(F\)-contributors for modules of finite \(F\)-representation type are \(F\)-abundant modules.

(c) (Dao-Smirnov) Let \(k \) be an algebraically closed field of characteristic \(p > 2 \). Consider the hypersurface \(R = k[[x, y, u, v]]/(xy - uv) \). Then every maximal Cohen-Macaulay \(R\)-module is \(F\)-abundant.

Lemma

\textit{Suppose that \(R \) is \((S_2)\) and equidimensional and that \(N \in \text{mod}(R) \) is \((S_2)\). Let \(b_e \) be maximum such that \(eN = N \oplus b_e \oplus N_e \). Suppose that \(\liminf_{e \to \infty} p^{e(\alpha(R) + d - 3)} / b_e = 0 \). Then \(N \) is maximal Cohen-Macaulay. \(\square \)
Main Technical Theorem

Lemma
Let M, N be R-modules such that $^e M = N^{be} \oplus P_e$ and
\[
\liminf_{e \to \infty} \frac{b_e}{p^e(k + \alpha(R))} > 0.
\]

Then depth $N \geq k$. In particular, if $k = \text{dim}(M)$, then N is Cohen-Macaulay.

Theorem
Let R be (S_2) and equidimensional. Let $M \in \mathcal{FT}(R)$ and $N \in \text{mod}(R)$ is (S_2). Assume that for every $P \in \text{Spec } R$ such that $\text{ht}(P) \geq 3$, (N_P, L_P) is an abundant pair. Assume further that for every $P \in \text{Spec } R$ such that $3 \leq \text{ht}(P) < d$, we have $N_P \in \text{add } L_P$. Then $\text{Hom}_R(M(e), L)$ is maximal Cohen-Macaulay for all $e \geq 0$.

The ingredients for the proof are:
- those in the lemma, namely, calculation of the length of local cohomology modules,
- “index shifting”,
- induction on $d = \text{dim}(R)$.

The Category of Modules of Finite F-type

Corollary
Suppose that R is Cohen-Macaulay. Let $M \in \mathcal{FT}(R)$ be (S_2). Suppose that:

(a) either $\text{sdim } R > 0$ and $M(e)_P$ is maximal Cohen-Macaulay for every $P \in \text{Spec } R$ such that $3 \leq \text{ht}(P) < d$ and $e \geq 0$; or

(b) $\text{sdim } R_P > 0$ for all $P \in \text{Spec } R$ such that $\text{ht } P \geq 3$.

Then M is maximal Cohen-Macaulay.

Corollary
Suppose that R is strongly F-regular and I is a reflexive ideal such that $[I]$ is torsion in $\text{Cl}(R)$. Then I is MCM.

Theorem
Suppose that R is a complete intersection and $M \in \text{mod}(R)$ is free in codimension 2. Then $M \in \mathcal{FT}(R)$ if and only if M^{**} is free.

Lemma
Suppose that R is regular. Consider the following statements:

(a) $M \in \mathcal{FT}(R)$

(b) M^* is free.

(c) M^{**} is free.

Then (a) \Rightarrow (b) \Leftrightarrow (c). If M is free in codimension 1, then (a) \Leftrightarrow (b) \Leftrightarrow (c).
Geometric Applications

Lemma

Let M, N be R-modules such that $^eM = N^{be} \oplus P_e$ and

$$\liminf_{e \to \infty} \frac{b_e}{p^{e(k+\alpha(R))}} > 0.$$

Then $\text{depth } N \geq k$. In particular, if $k = \dim(M)$, then N is Cohen-Macaulay.

Theorem

Let R be a F-finite normal domain with perfect residue field and $X = \text{Spec } R$. Let Δ be a \mathbb{Q}-divisor on X such that the pair (X, Δ) is strongly F-regular. Let D be an integral divisor such that $rD \sim r\Delta'$ for some integer $r > 0$ and $0 \leq \Delta' \leq \Delta$. Then $\mathcal{O}_X(-D)$ is Cohen-Macaulay.

Remark

The theorem is similar to one by Patakfalvi-Schwede. The only difference is that we did not assume that r and p are coprime.
Proof of Theorem

Proof.

- Since \((X, \Delta')\) is strongly \(F\)-regular, we may assume that \(\Delta' = \Delta\).
- A result from Blickle-Schwede-Tucker shows that
 \[e [\mathcal{O}_X((p^e - 1)\Delta)] = \mathcal{O}_X^{ne} \oplus N_e \quad \text{with} \quad \liminf_{e \to \infty} \frac{n_e}{p^ed} > 0 \]
- Twist by \(\mathcal{O}_X(-D)\) and reflexify to get
 \[e [\mathcal{O}_X((p^e - 1)(\Delta - D) - D)] = \mathcal{O}_X(-D)^{ne} \oplus N'_e \]
- Since \(r(\Delta - D) \sim 0\), there are only finitely many isomorphism classes of \(\mathcal{O}_X((p^e - 1)(\Delta - D) - D)\). Let \(M\) be the direct sum of all class representatives and \(\mathcal{O}_X(-D)\). Then
 \[eM \cong \mathcal{O}_X(-D)^{ne} \oplus P_e \quad \text{with} \quad \liminf_{e \to \infty} \frac{n_e}{p^ed} > 0 \]
- \(\mathcal{O}_X(-D)\) is then Cohen-Macaulay by the lemma. \(\square\)