A brief guideline for Math 648 Exam 1 SP2016

• Exam 1 is scheduled on Feb. 25. The exam coverage is up to Section 4.

• Basics: You are expected to remember (if you don’t want to re-derive) the First Variation and Euler-Lagrange equation for each of the following forms of optimization problems:

 (i) \(J(y) = \int_{x_0}^{x_1} f(x, y, y') dx \) with \(y(x_0) = y_0, \ y(x_1) = y_1; \)

 (ii) \(J(y) = \int_{x_0}^{x_1} f(x, y, y'') dx \) with \(y(x_0) = y_0, \ y'(x_0) = p_0, \ y(x_1) = y_1, \ y'(x_1) = p_1; \)

 (iii) \(J(q) = \int_{t_0}^{t_1} f(t, q(t), q'(t)) dt \) with \(q(t_0) = q_0, \ q(t_1) = q_1; \)

 (iv) \(J(y) = \int_{x_0}^{x_1} f(x, y, y') dx \) (or \(J(q) = \int_{t_0}^{t_1} f(t, q, \dot{q}) dt \))

 with fixed boundary conditions and subject to the isoperimetric constraint \(I(y) = \int_{x_0}^{x_1} g(x, y, y') dx = L \) (or \(I(q) = \int_{t_0}^{t_1} g(t, q, \dot{q}) dt = L \)).

• Special conserved quantities such as \(H = y' f_y' - f \) if \(f(x, y, y') = f(y, y') \) for special cases of \(f \) are important for solving Euler-Lagrange equations.

• Techniques: In addition to everything from calculus, you are expected to know how to solve

 – First order linear, separable, and exact ODEs;
 – Higher order linear ODEs with constant coefficients (homogeneous and nonhomogeneous);
 – Linear systems of first order ODEs with constant coefficients.