A simple model for ionic flow with \(n \) ion species through membrane channel is

\[
\varepsilon^2 \phi''(x) = -\sum_{s=1}^{n} z_s c_s(x), \tag{1}
\]

\[
J_k' = 0, \quad -J_k = D_k \left(c_k'(x) + z_k c_k(x) \phi'(x) \right), \quad \text{for } k = 1, 2, \ldots, n, \tag{2}
\]

where \(x \in [0, 1] \) with the interval \([0, 1]\) representing the one-dimensional channel, \(\phi(x) \) is the electric potential, \(\varepsilon \) is the reciprocal of Debye length; for the \(k \)th ion species, \(c_k(x) \) is the concentration, \(z_k \) is the valence (number of charges per ion; for example, it is 2 for Ca (calcium) and \(-1\) for Cl (chloride)), \(D_k > 0 \) is the diffusion constant (assumed to be given), \(J_k \) is the flux of the \(k \)th ion species.

The unknowns are \(\phi(x), c_k(x) \) and \(J_k \) (constants) for \(k = 1, 2, \ldots, n \).

There are boundary conditions at \(x = 0 \) and \(x = 1 \), for \(k = 1, 2, \ldots, n \),

\[
\phi(0) = V \neq 0, \quad c_k(0) = L_k > 0; \quad \phi(1) = 0, \quad c_k(1) = R_k > 0. \tag{3}
\]

This boundary value problem (1)–(3) is hard to solve since equations for \(c_k \)'s are coupled with each other through \(\phi \).

Now, assume \(\phi(x) \) is a linear function of \(x \) so equation (1) can be ignored.

(i) Find \(\phi(x) \) from its boundary conditions in (3);

(ii) Find a general solution for each \(c_k \) from the second equation in (2);

(iii) Determine the unknown constants \(J_k \)'s using the boundary conditions for \(c_k \)'s in (3);

(iv) Derive a formula for the current \(I = \sum_{s=1}^{n} z_s J_s \);

(v) Suppose further \(n = 2, z_1 = 1 \) and \(z_2 = -1 \). Use (iv) to solve for \(V \) so that \(I = 0 \).
Solution Key. (i). With the assumption that \(\phi(x) \) is linear, one has \(\phi(x) = (1 - x)V \).

(ii). Thus, equation for \(c_k \) in (2) is reduced to

\[
 c'_k(x) - z_k V c_k(x) = -\frac{J_k}{D_k},
\]

which is a 1st-order linear ODE and has a general solution

\[
 c_k(x) = \frac{J_k}{z_k V D_k} + d_k e^{z_k V x},
\]

where \(d_k \) is an arbitrary constant.

(iii) & (iv). Apply the boundary conditions \(c_k(0) = L_k \) and \(c_k(1) = R_k \) to get

\[
 L_k = \frac{J_k}{z_k V D_k} + d_k \quad \text{and} \quad R_k = \frac{J_k}{z_k V D_k} + d_k e^{z_k V}.
\]

Eliminating \(d_k \) yields

\[
 J_k = z_k D_k V R_k - L_k e^{z_k V}.
\]

and

\[
 I = V \sum_{k=1}^{n} z_k^2 D_k R_k - L_k e^{z_k V}.
\]

(4)

Remark. Equation (4) provides a dependence of the current \(I \) on the voltage \(V \) when other parameters are fixed. It is the so-called Goldman-Hodgkin-Katz equation or I-V (current-voltage) relation. I-V relation is an extremely important characteristic of ion channel properties. It should be stressed that the I-V relation (4) is obtained by assuming that \(\phi \) is linear in \(x \), which is NOT correct in general. Also, this model works mainly for ideal ionic mixtures.

(v). For \(n = 2 \), \(z_1 = 1 \) and \(z_2 = -1 \), one has

\[
 I = V D_1 \frac{R_1 - L_1 e^V}{1 - e^V} + V D_2 \frac{R_2 - L_2 e^{-V}}{1 - e^{-V}}.
\]

Thus, \(I = 0 \) if and only if

\[
 D_1 \frac{R_1 - L_1 e^V}{1 - e^V} + D_2 \frac{R_2 - L_2 e^{-V}}{1 - e^{-V}} = 0,
\]

or equivalently,

\[
 (D_1 L_1 + D_2 R_2)(e^V)^2 - (D_1 R_1 + D_1 L_1 + D_2 L_2 + D_2 R_2) e^V + (D_1 R_1 + D_2 L_2) \frac{1}{(D_1 L_1 + D_2 R_2)}(e^V - 1) = 0.
\]

Since \(V \neq 0 \), one has

\[
 V = \ln \frac{D_1 R_1 + D_2 L_2}{D_1 L_1 + D_2 R_2}.
\]

Such a potential \(V \) that makes \(I = 0 \) is called a reversal potential or Nernst potential.