Lecture 17: Section 4.2

Shuanglin Shao

November 4, 2013
Subspaces

We will discuss subspaces of vector spaces.
Definition. A subset W is a vector space V is called a subspace of V if W is itself a vector space under the addition and scalar multiplication defined on V.
Since W is a subset of V, certain axioms holding for V apply to vectors in W. For instance, if $v_1, v_2 \in W$,

$$v_1 + v_2 = v_2 + v_1.$$

So to say a subset W is a subspace of V, we need to verify that W is closed under addition and scalar multiplication.

Theorem. If W is a set of one or more vectors in a vector space V, then W is a subspace of V if and only if the following conditions hold.

(a). If $u, v \in W$, then $u + v \in W$.

(b). If k is any scalar and u is any vector in W, then ku is in W.
Proof. The zero vector is in W because we can take $k = 0$. Given $u \in W$, $-u \in W$. The rest axioms holding for V are also true for W. So W is a vector space. Hence W is a subspace of V.
Zero vector space.

Example. Let V be any vector space and $W = \{0\}$. Then W is a subspace of V because

$$0 + 0 = 0, \text{ and } k0 = 0,$$

for any scalar k.

Example.

Lines through the origin are subspaces of \mathbb{R}^2 or \mathbb{R}^3. Let l be a line in \mathbb{R}^2 through the origin, denoted by W, then for any two vectors $v_1, v_2 \in W$,

\[
 v_1 = t_1 v, \\
 v_2 = t_2 v,
\]

where v is the direction of the line l. Then

\[
 v_1 + v_2 = (t_1 + t_2)v;
\]

so $v_1 + v_2$ is on the line l. On the other hand, for any scalar k,

\[
 kv_1 = (kt_1)v.
\]

Hence kv_1 is on the line l. So l is a subspace.

Note that lines in \mathbb{R}^2 and \mathbb{R}^3 not through the origin are not subspaces because the origin 0 is not on the lines.
Example.

Planes through the origin are subspaces in \mathbb{R}^3. This can be proven similarly as in the previous example.
Example.

Let $V = \mathbb{R}^2$. Let $W = \{(x, y) : x \geq 0, y \geq 0\}$. This set is not a subspace of \mathbb{R}^2 because W is not closed under scalar multiplication. For instance, $\mathbf{v}_1 = (1, 2) \in W$, but $-\mathbf{v}_1 = (-1, -2)$ is not in the set W.
Subspaces of $M_{n \times n}$.

Let W be the set of symmetric matrices. Then W is a subspace of V because the sum of two symmetric matrices and the scalar multiplication of symmetric matrices are in W.
A subset of $M_{n \times n}$ is not a subspace.

Let W be the set of invertible $n \times n$ matrices. W is not a subspace because the zero matrix is not in W.

Note that to see whether a set is a subspace or not, one way is to see whether the zero vector is in the set or not.
The subspace $C(-\infty, \infty)$.

Let V be a vector space of functions on \mathbb{R}, and $W = C(-\infty, \infty)$, the set of continuous functions on \mathbb{R}. Then the sum of two continuous functions and scalar multiplication of continuous functions are still continuous functions. Then W is a subspace of V.
The subspace of all polynomials.

Let V be a vector space of functions on \mathbb{R}, and W be the subset of all polynomials on \mathbb{R}. Then W is a subspace of V.
Theorem. If W_1, W_2, \cdots, W_r are subspaces of a vector space V and let W be the intersection of these subspaces, then W is also a subspace of V.

Proof. Let $v_1, v_2 \in W$, then for any $1 \leq i \leq r$,

$$v_1, v_2 \in W_i.$$

Then

$$v_1 + v_2 \in W_i \text{ for any } i.$$

Hence $v_1 + v_2 \in W$. On the other hand, for any scalar, $kv_1 \in W_i$ for any i. Therefore $kv_1 \in W$. Thus W is a subspace of V.

Remark. The union of the two subspaces V_1, V_2 of V is not a subspace of V. For instance, let l_1 and l_2 be two lines through the origin in \mathbb{R}^2. We know that l_1, l_2 are subspace of \mathbb{R}^2. Take v_1, v_2 be two vectors on l_1, l_2. Thus by the parallelogram rule of sum of two vectors, $v_1 + v_2$ is not in $V_1 \cup V_2$. Thus $V_1 \cup V_2$ is not a subspace of \mathbb{R}^2.
Definition. If \(w \) is a vector in a vector space \(V \), then \(w \) is said to be a linear combination of the vectors \(v_1, v_2, \cdots, v_r \) in \(V \) if \(w \) can be expressed in the form

\[
 w = k_1 v_1 + k_2 v_2 + \cdots + k_r v_r
\]

for some scalars \(k_1, k_2, \cdots, k_r \). Then these scalars are called the coefficients of the linear combination.
Theorem. If \(S = \{w_1, w_2, \cdots, w_r\} \) is a nonempty set of vectors in a vector space \(V \), then

(a). The set \(W \) of all possible linear combinations of the vectors in \(S \) is a subspace of \(V \).

(b). The set \(W \) in part (a) is the “smallest” subspace of \(V \) that contains all of the vectors in \(S \) in the sense that any other subspace that contains those vectors contains \(W \).
Proof. Part (a). Let \(u = c_1 w_1 + c_2 w_2 + \cdots + c_r w_r \) and \(v = k_1 w_1 + k_2 w_2 + \cdots + k_r w_r \). Then

\[
\begin{align*}
 u + v &= (c_1 + k_1)w_1 + (c_2 + k_2)w_2 + \cdots + (c_r + k_r)w_r, \\
 ku &= (k_1 c_1)w_1 + (k_2 c_2)w_2 + \cdots + (k_r c_r)w_r.
\end{align*}
\]

Thus \(W \) is a subspace.
Part (b). Let V_1 be a subspace of V and contains all the linear combinations of w_1, w_2, \cdots, w_r. Then

$$W \subset V_1.$$
Definition. The subspace of a vector space V that is formed from all possible linear combinations of the vectors in a nonempty set S is called the span of S, and we say that the vectors in S span that subspace.

If $S = \{w_1, w_2, \cdots, w_r\}$, then we denote the span of S by $\text{span}(w_1, w_2, \cdots, w_r)$, $\text{span}(S)$.
Example. The standard unit vectors span \mathbb{R}^n. Recall that the standard unit vectors in \mathbb{R}^n are

$$e_1 = (1, 0, 0, \ldots, 0), \ e_2 = (0, 1, 0 \ldots, 0), \ldots, e_n = (0, 0, \ldots, 0, 1).$$

Proof. Any vector $v = (v_1, v_2, \ldots, v_n)$ is a linear combination of e_1, e_2, \ldots, e_n because

$$v = v_1 e_1 + v_2 e_2 + \cdots + v_n e_n.$$

Thus

$$\mathbb{R}^n \subset \text{span} (e_1, e_2, \ldots, e_n).$$

Hence

$$\mathbb{R}^n = \text{span} (e_1, e_2, \ldots, e_n).$$
Example.

Let P_n be a set of all the linear combinations of polynomials $1, x, x^2, \cdots, x^n$. Thus

$$P_n = \text{span}(1, x, x^2, \cdots, x^n).$$
Linear combinations.

Let \(\mathbf{u} = (1, 2, -1) \) and \(\mathbf{v} = (6, 4, 2) \) in \(\mathbb{R}^3 \). Show that \(\mathbf{w} = (9, 2, 7) \) is a linear combination of \(\mathbf{u} \) and \(\mathbf{v} \) and that \(\mathbf{w}' = (4, -1, 8) \) is not a linear combination of \(\mathbf{u}, \mathbf{v} \).

Solution. Let \((9, 2, 7) = k_1 (1, 2, -1) + k_2 (6, 4, 2) \). Thus

\[
\begin{align*}
k_1 + 6k_2 &= 9, \\
2k_1 + 4k_2 &= 2, \\
-k_1 + 2k_2 &= 7.
\end{align*}
\]

Thus

\[
k_1 = -3, \ k_2 = 2.
\]
Solution. Suppose that there exist \(k_1 \) and \(k_2 \) such that
\[
\mathbf{w}' = (4, -1, 8) = k_1(1, 2, -1) + k_2(6, 4, 2).
\]

Thus
\[
\begin{align*}
k_1 + 6k_2 &= 4, \\
2k_1 + 4k_2 &= -1, \\
-k_1 + 2k_2 &= 8.
\end{align*}
\]

Therefore from the first and third equations, we have
\[
k_1 = -5, \quad k_2 = \frac{3}{2}.
\]

But this solution does not satisfy the second equation.
Testing for spanning.

Determine whether \(\mathbf{v}_1 = (1, 1, 2), \mathbf{v}_2 = (1, 0, 1) \) and \(\mathbf{v}_3 = (2, 1, 3) \) span the vector space \(\mathbb{R}^3 \).

Solution. We know that

\[
\text{span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) \subset \mathbb{R}^3.
\]

For any vector \(\mathbf{b} = (b_1, b_2, b_3) \in \mathbb{R}^3 \), there exists \(k_1, k_2 \) and \(k_3 \) such that

\[
\mathbf{b} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + k_3 \mathbf{v}_3.
\]

Thus

\[
\begin{cases}
 k_1 + k_2 + 2k_3 = b_1, \\
 k_1 + k_3 = b_2, \\
 2k_1 + k_2 + 3k_3 = b_3.
\end{cases}
\]
The coefficient matrix is in form of

\[
\begin{bmatrix}
1 & 1 & 2 \\
1 & 0 & 1 \\
2 & 1 & 3
\end{bmatrix}.
\]

The determinant of the coefficient matrix is

\[
\begin{vmatrix}
1 & 2 \\
2 & 3
\end{vmatrix} -
\begin{vmatrix}
1 & 1 \\
1 & 1
\end{vmatrix} = 2 \neq 0.
\]
Theorem. The solution set of a homogeneous linear system $A\mathbf{x} = \mathbf{0}$ in n unknowns is subspace of \mathbb{R}^n.

Solution. Let x_1, x_2 be two solutions to the linear system $A\mathbf{x} = \mathbf{0}$. Then

$$A(x_1 + x_2) = 0 + 0 = 0,$$

and

$$A(kx_1) = kA(x_1) = k\mathbf{0} = \mathbf{0}.$$

Thus the solution set is a subspace of \mathbb{R}^n.
Homework and Reading.

Homework. Ex. # 1, # 2, # 4, # 5, # 7, # 8, # 14, # 15. True or false questions on page 190.

Reading. Section 4.3.