RAO-BLACKWELL THEOREM

1. Introduction

Let $X = (X_1, \ldots, X_n)$ be a random sample from f_θ, where $\theta \in \Theta$. Let g be a function of θ. A estimator W for $g(\theta)$ is a **uniform minimum variance unbiased estimator** (UMVUE, MVUE) if for all $\theta \in \Theta$, it is unbiased, $\mathbb{E}_\theta W = g(\theta)$, and if Y is any other unbiased estimator then $\text{Var}_\theta(W) \leq \text{Var}_\theta(Y)$. Let us remark that a MVUE may not exist.

If certain regularity conditions are satisfied, we already know from the Cramer-Rao lower bound, that

$$\text{Var}_\theta(W) \geq \frac{(g'(\theta))^2}{nI(\theta)}.$$

We also said any estimator satisfying the Cramer-Rao lower bound is efficient. However, not every MVUE is efficient, and the regularity conditions are not always satisfied, in particular, when the domain of the pdf depends on θ. We will use sufficient statistics to help us find a MVUE.

One the main tools in improving estimators is the following theorem.

Theorem 1 (Rao-Blackwell). Let $X = (X_1, \ldots, X_n)$ be a random sample from f_θ, where $\theta \in \Theta$. Let g be a function of θ. Let Y be an unbiased estimator for $g(\theta)$. Let T be a sufficient statistic for θ. Set $W = \mathbb{E}_\theta(Y|T)$. Then W is also an unbiased estimator, and furthermore,

$$\text{Var}_\theta(W) \leq \text{Var}_\theta(Y).$$

Sometimes W is a **Rao-Blackwell estimator**. Let us remark in Theorem 1, we do not know that W is a MVUE. However, it turns out that under certain conditions, W is the unique MVUE. Before we prove Theorem 1, we will recall some properties of conditional expectation.

Let X and Y be random variables. Recall that $\mathbb{E}(X|Y)$ is also random variable, and in particular, it is a function of Y; that is, there exists ϕ, such that $\phi(Y) = \mathbb{E}(X|Y)$. In earlier courses, you found ϕ be computing, $\phi(y) := \mathbb{E}(X|Y = y)$. Thus Theorem 1, tell us that when we are looking for MVUE, we can restrict ourselves to functions of sufficient statistics; I hope this justifies the use of the word ‘sufficient.’

An important property of conditional expectations is that

$$\mathbb{E}(\mathbb{E}(X|Y)) = \mathbb{E}(X).$$
Recall that we define
\[\text{Var}(X|Y) := \mathbb{E}(X^2|Y) - (\mathbb{E}(X|Y))^2.\]

It follows from Jensen’s inequality, for conditional expectations, that \(\text{Var}(X|Y) \geq 0.\)

Exercise 2. Let \(Z = \mathbb{E}(X|Y)\) Show that
\[
\text{Var}(X) = \text{Var}(Z) + \mathbb{E}(\text{Var}(X|Y)).
\]
So that in particular, we have
\[
\text{Var}(Z) \leq \text{Var}(X).
\]

Note that it is very important that \(T\) be a sufficient statistic in Theorem 1. Consider a random sample \(X = (X_1, \ldots, X_n),\) where \(X_i \sim \text{Bern}(p),\) and \(n > 2.\) It is not hard to show that \(X_2\) is not a sufficient statistic for \(p,\) however, \(X_1\) is an unbiased estimator for \(p,\) and \(\mathbb{E}(X_1|X_2) = \mathbb{E}(X_1) = p,\) since \(X_1\) is independent of \(X_2;\) thus \(\mathbb{E}(X_1|X_2)\) is not an estimator for \(p.\)

Proof of Theorem 1. Note that it is immediate from the properties of conditional expectations that \(\mathbb{E}_\theta W = g(\theta),\) and that \(W\) is a function of \(X,\) since it is a function of \(T.\) It is also immediate by Exercise 2 that the claim regarding the variances holds.

However, this does not mean that \(W\) is an estimator; we need to also show that it does not depend on \(\theta.\) The fact that \(W\) does not depend on \(\theta,\) follows from the fact that the original \(Y\) is also a estimator, and hence a function of \(Y = u(X),\) for some function, that does not depend on \(\theta,\) and the fact that \(T\) is a sufficient statistic. \(\square\)

In proof of Theorem 1, to see the last claim more clearly, consider the case where all the random variables are discrete. Let \(p(x, t) = \mathbb{P}(X = x \mid T = t),\) then \(p(x, t)\) does not depend on \(\theta,\) since \(T\) is a sufficient statistic. Thus
\[
\phi(t) := \mathbb{E}(Y|T = t) = \mathbb{E}(u(X)|T = t) = \sum_x u(x)p(x, t)
\]
also does not depend on \(\theta.\) Hence \(\phi(T)\) does not depend on \(\theta,\) since \(T\) does not depend on \(\theta.\)

2. **Examples**

You will see in the following examples that one can start with very modest estimators, one’s which are not even consistent, and obtain much improved estimators by finding corresponding Rao-Blackwell estimators.
Exercise 3. Let $X = (X_1, \ldots, X_n)$ be a random sample from f_θ. Suppose that the sample sum $T = X_1 + \cdots + X_n$ is a sufficient statistic for θ and that $\mathbb{E}X_1 = \theta$. Find the Rao-Blackwell estimator $\mathbb{E}(X_1|T)$. Hint: you basically did this for homework.

Exercise 4. Let $X = (X_1, \ldots, X_n)$ be a random sample, where $X_i \sim \text{Unif}(0, \theta)$. We know that $M = \max \{X_1, \ldots, X_n\}$ is a sufficient statistic for θ. Note that $\mathbb{E}X_1 = \theta/2$. Find the Rao-Blackwell estimator $\mathbb{E}(X_1|T)$. Hint: you basically did this for homework.

Exercise 5. Let $X = (X_1, \ldots, X_n)$ be a random sample, where $X_i \sim \text{Poi}(\lambda)$. We know that the sample sum T is a sufficient statistic for θ. Here, we want to estimate $\mathbb{P}(X_1 = 0) = e^{-\lambda}$. Set $Y = 1[\mathbb{X}_1 = 0]$. Clearly, Y is an unbiased estimator for $\mathbb{P}(X_1 = 0)$. Show that the Rao-Blackwell estimator satisfies

$$\mathbb{E}(Y|T) = (1 - \frac{1}{n})^T.$$

Exercise 6. Show that in Exercise 5, the Rao-Blackwell estimator is consistent.

Exercise 7. Let $X = (X_1, \ldots, X_n)$ be a random sample, where $X_i \sim N(\mu, 1)$, where $\mu \in \mathbb{R}$ is unknown. Here, we are interested in estimating μ^2. In a previous exercise, you found that

$$T = (\bar{X})^2 - 1/n,$$

is an unbiased estimator for μ^2 and you computed the variance of T. I promised you that we will be able to prove that T is the MVUE, we are almost there. Compute the Fisher information for the random sample X, note that the variance of T strictly larger than associated Cramer-Rao bound.

Exercise 8. Note that the random sample itself X, is trivially a sufficient statistic. What happens when you apply you find the Rao-Blackwell estimator with respect to X?

Exercise 9. What happens when you try to use the Rao-Blackwell theorem twice?