Eigenvalues and Eigenvectors
§5.2 Diagonalization

Satya Mandal, KU

Summer 2017
Suppose A is square matrix of order n.

- Provide necessary and sufficient condition when there is an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.
Definitions

- Two square matrices A, B are said to be **similar**, if there is an invertible matrix P, such that $A = P^{-1}BP$.

- A square matrix A said to be **diagonalizable**, if there is an invertible matrix P, such that $P^{-1}AP$ is a diagonal matrix. That means, if A is similar to a diagonal matrix, we say that A is **diagonalizable**.
Theorem 5.2.1

Suppose A, B are two similar matrices. Then, A and B have same eigenvalues.

Proof. Write $A = P^{-1}BP$. Then

$$
|\lambda I - A| = |\lambda I - P^{-1}BP| = |\lambda(P^{-1}P) - P^{-1}BP| = |P^{-1}(\lambda I - BP)|
$$

$$
= |P^{-1}||\lambda I - B||P| = |P|^{-1}|\lambda I - B||P| = |\lambda I - B|
$$

So, A and B has same characteristic polynomials. So, they have same eigenvalues. The proof is complete.
Theorem 5.2.2: Diagonalizability

We ask, when a square matrix is diagonalizable?

Theorem 5.2.2 A square matrix A, of order n, is diagonalizable if and only if A has n linearly independent eigenvectors.

Proof. There are two statements to prove. First, suppose A is diagonalizable.

Then $P^{-1}AP = D$, and hence $AP = PD$

where P is an invertible matrix and D is a diagonal matrix.

Write, $D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$, $P = \begin{pmatrix} p_1 & p_2 & \cdots & p_n \end{pmatrix}$
Since \(AP = PA \), we have

\[
A \begin{pmatrix} p_1 & p_2 & \cdots & p_n \end{pmatrix} = \begin{pmatrix} p_1 & p_2 & \cdots & p_n \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.
\]

Or

\[
\begin{pmatrix} Ap_1 & Ap_2 & \cdots & Ap_n \end{pmatrix} = \begin{pmatrix} \lambda_1 p_1 & \lambda_2 p_2 & \cdots & \lambda_n p_n \end{pmatrix}.
\]
So,

\[A p_i = \lambda_i p_i \quad \text{for} \quad i = 1, 2, \ldots, n \]

Since \(P \) is invertible, \(p_i \neq 0 \) and hence \(p_i \) is an eigenvector of \(A \), for \(\lambda \).

Also, \(\text{rank}(P) = n \). So, its columns \(\{p_1, p_2, \ldots, p_n\} \) are linearly independent.

So, it is established that if \(A \) is diagonalizable, then \(A \) has \(n \) linearly independent eigenvectors.
Now, we prove the converse. So, we assume \(A \) bas has \(n \) linearly independent eigenvectors:

\[
\{ p_1, p_2, \ldots, p_n \}
\]

So,

\[
A p_1 = \lambda_1 p_1, \quad A p_2 = \lambda_2 p_2, \quad \cdots, \quad A p_n = \lambda_n p_n \quad \text{for some} \quad \lambda_i.
\]
Write,

\[P = \begin{pmatrix} p_1 & p_2 & \cdots & p_n \end{pmatrix} \text{ and } D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}. \]

It follows from the equations \(A p_i = \lambda_i p_i \) that

\[AP = PD. \text{ So, } P^{-1}AP = D \text{ is diagonal.} \]

The proof is complete.
Steps for Diagonalizing

Suppose A is a square matrix of order n.

- If A does not have n linearly independent eigenvectors, then A is not diagonalizable.
- When possible, find n linearly independent eigenvectors p_1, p_2, \ldots, p_n for A with corresponding eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.
- Then, write

$$P = \begin{pmatrix} p_1 & p_2 & \cdots & p_n \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

- We have $D = P^{-1}AP$ is a diagonal matrix.
Corollary 4.4.3

Suppose V is a vectors space and x_1, x_2, \ldots, x_n be vectors in V. Then, x_1, x_2, \ldots, x_n are linearly dependent if and only if there is an integer $m \leq n$ such that (1) x_1, x_2, \ldots, x_m are linearly dependent and (2) $x_m \in \text{span}(x_1, x_2, \ldots, x_{m-1})$.

Proof. Suppose x_1, x_2, \ldots, x_n are linearly dependent. By Theorem 4.4.2, one of these vectors is a linear combination of the rest. By relabeling, we can assume x_n is a linear combination of $x_1, x_2, \ldots, x_{n-1}$. Let

$$m = \min\{ k : x_k \in \text{span}(x_1, x_2, \ldots, x_{k-1}) \}$$
If \(x_1, x_2, \ldots, x_{m-1} \) are linearly dependent, then we could apply Theorem 4.4.2 again, which would lead to a contradiction, that \(m \) is minimum. So, \(x_1, x_2, \ldots, x_{m-1} \) are linearly independent. This establishes one way implication. Conversely, suppose there is an \(m \leq n \) such that (1) and (2) holds. Then,

\[
x_m = c_1x_1 + \cdots + c_{m-1}x_{m-1}
\]

for some \(c_1, \ldots, c_{m-1} \in \mathbb{R} \). So,

\[
c_1x_1 + \cdots + c_{m-1}x_{m-1} + (-1)x_m = 0
\]

which is a nontrivial linear combination. So, \(x_1, x_2, \ldots, x_m, \ldots, x_n \) are linearly dependent.
Theorem 5.2.3: With Distinct Eigenvalues

Let A be a square matrix A, of order n. Suppose A has n distinct eigenvalues. Then

- the corresponding eigenvectors are linearly independent
- and A is diagonalizable.

Proof.

- The second statement follows from the first, by theorem 5.2.2. So, we prove the first statement only.
- Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be distinct eigenvalues of A.
- So, for $i = 1, 2, \ldots, n$ we have

$$Ax_i = \lambda_i x_i \quad \text{where} \quad x_i \neq 0 \quad \text{are eigenvectors.}$$
We need to prove that x_1, x_2, \ldots, x_n are linearly independent. We prove by contra-positive argument.

- So, assume they are linearly dependent.
- By Corollary 4.4.3 there is an $m < n$ such that x_1, x_2, \ldots, x_m are mutually linearly independent and x_{m+1} is in can be written as a linear combination of \{ x_1, x_2, \ldots, x_m \}. So,

$$x_{m+1} = c_1 x_1 + c_2 x_2 + \cdots + c_m x_m \quad (1)$$

Here, at least one $c_i \neq 0$. Re-labeling x_i, if needed, we can assume $c_1 \neq 0$.
Multiply (1) by A on the left:

$$Ax_{m+1} = c_1Ax_1 + c_2Ax_2 + \cdots + c_mAxA_m$$ \hspace{1cm} (2)

Now, use $Ax_i = \lambda_i x_i$,

$$\lambda_{m+1}x_{m+1} = \lambda_1c_1x_1 + \lambda_2c_2x_2 + \cdots + \lambda_m c_mA_m$$ \hspace{1cm} (3)

Also, multiply (1) by λ_{m+1}, we have

$$\lambda_{m+1}x_{m+1} = \lambda_{m+1}c_1x_1 + \lambda_{m+1}c_2x_2 + \cdots + \lambda_{m+1}c_mA_m$$ \hspace{1cm} (4)
Subtract (3) from (4):

$$(\lambda_{m+1} - \lambda_1)c_1 x_1 + (\lambda_{m+1} - \lambda_2)c_2 x_2 + \cdots + (\lambda_{m+1} - \lambda_m)c_m x_m = 0.$$

Since these vectors are linearly independent, and hence

$$(\lambda_{m+1} - \lambda_i)c_i = 0 \quad \text{for} \quad i = 1, 2, \ldots, m.$$

Since $c_1 \neq 0$ we get $\lambda_{m+1} - \lambda_1 = 0$ or $\lambda_{m+1} = \lambda_1$. This contradicts that λ_is are distinct. So, we conclude that x_1, x_2, \ldots, x_n are linearly independent. The proof is complete.
Example 5.2.2

Let \(A = \begin{pmatrix} 2 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 3 \end{pmatrix} \) and \(P = \begin{pmatrix} 1 & 1 & 5 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \).

Verify that \(A \) is diagonalizable, by computing \(P^{-1}AP \).

Solution: We do it in a two steps.

1. Use TI to compute

\[
P^{-1} = \begin{pmatrix} 1 & 1 & -3 \\ 0 & -1 & 0.5 \\ 0 & 0 & 0.5 \end{pmatrix} .
\]

So, \(P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \).

So, it is verified that \(P^{-1}AP \) is a diagonal matrix.
Example 5.2.3

Let \(A = \begin{pmatrix} 3 & 1 \\ -9 & -3 \end{pmatrix} \).

Show that \(A \) is not diagonalizable.

Solution: Use Theorem 5.2.2 and show that \(A \) does not have 2 linearly independent eigenvectors. To do this, we have find and count the dimensions of all the eigenspaces \(E(\lambda) \). We do it in a few steps.

1. First, find all the eigenvalues. To do this, we solve

\[
\det(\lambda I - A) = \begin{vmatrix} \lambda - 3 & -1 \\ 9 & \lambda + 3 \end{vmatrix} = \lambda^2 = 0.
\]

So, \(\lambda = 0 \) is the only eigenvalue of \(A \).
Now we compute the eigenspace $E(0)$ of the eigenvalue $\lambda = 0$. We have $E(0)$ is solution space of

\[(0I - A) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ or } \begin{pmatrix} -3 & -1 \\ 9 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}\]

Using TI (or by hand), a parametric solution of this system is given by $x = -0.5t$, $y = t$.

So, $E(0) = \{(t, -3t) : t \in \mathbb{R}\} = \mathbb{R}1, -3)$. So, the (sum of) dimension(s) of the eigenspace(s)

\[= \dim E(0) = 1 < 2.\]

Therefore A is not diagonalizable.
Example 5.2.3

Let
\[A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \end{pmatrix}. \]

Show that \(A \) is not diagonalizable.

Solution: Use Theorem 5.2.2 and show that \(A \) does not have 3 linearly independent eigenvectors.

- To find the eigenvalues, we solve

\[
\det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & -1 & -1 \\ 0 & \lambda + 3 & -1 \\ 0 & 0 & \lambda + 3 \end{vmatrix} = (\lambda - 1)(\lambda + 3)^2 = 0.
\]

So, \(\lambda = 1, -3 \) are the only eigenvalues of \(A \).
We have $E(1)$ is solution space of

\[(I - A) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \]

Or

\[
\begin{pmatrix} 0 & -1 & -1 \\ 0 & 4 & -1 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
\]

(As an alternative approach, avoid solving this system.)

The (column) rank of the coefficient matrix is 2. So,

\[\dim(E(1)) = \text{nullity} = 3 - \text{rank} = 3 - 2 = 1.\]
Now we compute the dimension dim $E(-3)$. $E(-3)$ is the solution space of

$$(-3I - A) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} -4 & -1 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

The rank of the coefficient matrix is 2 (use TI, if you need). So,

$$\dim(E(-3)) = \text{nullity} = 3 - \text{rank} = 3 - 2 = 1.$$
So, the sum of dimensions of the eigenspaces

\[\dim E(1) + \dim E(-3) = 2 < 3. \]

Therefore A is not diagonalizable.
Example 5.2.4

Let \(A = \begin{pmatrix} 17 & 113 & -2 \\ 0 & \sqrt{2} & 1 \\ 0 & 0 & \pi \end{pmatrix} \) Find its eigenvalues and determine (use Theorem 5.2.3), if \(A \) is diagonalizable. If yes, write down a an invertible matrix \(P \) so that \(P^{-1}AP \) is a diagonal matrix.

Solution: To find eigenvalues solve

\[
\det(\lambda I - A) = \begin{vmatrix} \lambda - 17 & -113 & 2 \\ 0 & \lambda - \sqrt{2} & -1 \\ 0 & 0 & \lambda - \pi \end{vmatrix} = (\lambda - 17)(\lambda - \sqrt{2})(\lambda - \pi) = 0.
\]
So, A has three distinct eigenvalues $\lambda = 17, \sqrt{2}, \pi$. Since A is a 3×3 matrix, by Theorem 5.2.3, A is diagonalizable. We will proceed to compute the matrix P, by computing bases of $E(17)$, $E(\sqrt{2})$ and $E(\pi)$.

\[\text{\hfill }\]
To compute $E(17)$, we solve: $(17I_3 - A)x = 0$, which is

$$
\begin{pmatrix}
0 & -113 & 2 \\
0 & 17 - \sqrt{2} & -1 \\
0 & 0 & 17 - \pi
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}
$$

So, $z = y = 0$ and $x = t$, for any $t \in \mathbb{R}$. So,

$$E(17) = \left\{ \begin{pmatrix} t \\ 0 \\ 0 \end{pmatrix} : t \in \mathbb{R} \right\}$$
with $t = 1$ a basis of $E(17)$ is \[
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}
\]
To compute $E(\sqrt{2})$, we solve: $(\sqrt{2}I_3 - A)x = 0$, which is

$$
\begin{pmatrix}
\sqrt{2} - 17 & -113 & 2 \\
0 & 0 & -1 \\
0 & 0 & \sqrt{2} - \pi
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} =
\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}
$$

So, $z = 0$ and $x = t$ and $y = \frac{\sqrt{2} - 17}{113}t$ for any $t \in \mathbb{R}$. So,

$$E(\sqrt{2}) = \left\{ \begin{pmatrix} t \\ \frac{\sqrt{2} - 17}{113}t \\ 0 \end{pmatrix} : t \in \mathbb{R} \right\}$$
with $t = 113$ a basis of $E(\sqrt{2})$ is

$$\left\{ \begin{pmatrix} 113 \\ \sqrt{2} - 17 \\ 0 \end{pmatrix} \right\}$$
To compute $E(\pi)$, we solve: $(\pi I_3 - A)x = 0$, which is

$$
\begin{pmatrix}
\pi - 17 & -113 & 2 \\
0 & \pi - \sqrt{2} & -1 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}
$$

$$
\begin{cases}
z = t \\
y = \frac{1}{\pi - \sqrt{2}}z = \frac{1}{\pi - \sqrt{2}}t \\
x = \frac{113}{\pi - 17}y - \frac{2}{\pi - 17}z = \frac{113 + 2\sqrt{2} - 2\pi}{(\pi - 17)(\pi - \sqrt{2})}t
\end{cases}
$$

$$
E(\pi) = \left\{ \begin{pmatrix}
\frac{113 + 2\sqrt{2} - 2\pi}{(\pi - 17)(\pi - \sqrt{2})}t \\
\frac{1}{\pi - \sqrt{2}}t \\
t
\end{pmatrix} : t \in \mathbb{R} \right\}
$$
With $t = (\pi - 17)(\pi - \sqrt{2})$ a basis of $E(\pi)$ is

\[
\begin{pmatrix}
113 + 2\sqrt{2} - 2\pi \\
\pi - 17 \\
(\pi - 17)(\pi - \sqrt{2})
\end{pmatrix}
\]
We form the matrix of the eigenvectors.

\[
P = \begin{pmatrix}
1 & 113 & 113 + 2\sqrt{2} - 2\pi \\
0 & \sqrt{2} - 17 & \pi - 17 \\
0 & 0 & (\pi - 17)(\pi - \sqrt{2})
\end{pmatrix}.
\]

We check

\[
P^{-1}AP = \begin{pmatrix}
17 & 0 & 0 \\
0 & \sqrt{2} & 0 \\
0 & 0 & \pi
\end{pmatrix}
\]

Or

\[
AP = P \begin{pmatrix}
17 & 0 & 0 \\
0 & \sqrt{2} & 0 \\
0 & 0 & \pi
\end{pmatrix}
\]
Continued

We have

\[AP = \begin{pmatrix} 17 & 113 & -2 \\ 0 & \sqrt{2} & 1 \\ 0 & 0 & \pi \end{pmatrix} \begin{pmatrix} 1 & 113 & 113 + 2\sqrt{2} - 2\pi \\ 0 & \sqrt{2} - 17 & \pi - 17 \\ 0 & 0 & (\pi - 17)(\pi - \sqrt{2}) \end{pmatrix} \]

\[= \begin{pmatrix} 17 & 113\sqrt{2} & \pi(113 + 2\sqrt{2} - 2\pi) \\ 0 & \sqrt{2}(\sqrt{2} - 17) & \pi(\pi - 17) \\ 0 & 0 & \pi(\pi - 17)(\pi - \sqrt{2}) \end{pmatrix} \]

\[= P \begin{pmatrix} 17 & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & \pi \end{pmatrix} \]