Chapter 4

Vector Spaces

4.1 Vectors in \mathbb{R}^n

Homework: [Textbook, §4.1 Ex. 15, 21, 23, 27, 31, 33(d), 45, 47, 49, 55, 57; p. 189-].

We discuss vectors in plane, in this section.

In physics and engineering, a vector is represented as a directed segment. It is determined by a length and a direction. We give a short review of vectors in the plane.

Definition 4.1.1 A vector x in the plane is represented geometrically by a directed line segment whose initial point is the origin and whose terminal point is a point (x_1, x_2) as shown in in the textbook,
The bullet at the end of the arrow is the terminal point \((x_1, x_2)\). *(See the textbook, page 180 for a better diagram.)* This vector is represented by the same *ordered pair* and we write

\[x = (x_1, x_2). \]

1. We do this because other information is superfluous. Two vectors \(u = (u_1, u_2) \) and \(v = (v_1, v_2) \) are equal if \(u_1 = v_1 \) and \(u_2 = v_2 \).

2. Given two vectors \(u = (u_1, u_2) \) and \(v = (v_1, v_2) \), we define *vector addition*

\[u + v = (u_1 + v_1, u_2 + v_2). \]

See the diagram in the textbook, page 180 for geometric interpretation of vector addition.

3. For a scalar \(c \) and a vector \(v = (v_1, v_2) \) define

\[cv = (cv_1, cv_2) \]

See the diagram in the textbook, page 181 for geometric interpretation of scalar multiplication.

4. Denote \(-v = (-1)v\).
4.1. VECTORS IN \mathbb{R}^N

Reading assignment: Read [Textbook, Example 1-3, p. 180-] and study all the diagrams.

Obviously, these vectors behave like row matrices. Following list of properties of vectors play a fundamental role in linear algebra. In fact, in the next section these properties will be abstracted to define vector spaces.

Theorem 4.1.2 Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three vectors in the plane and let c, d be two scalar.

1. $\mathbf{u} + \mathbf{v}$ is a vector in the plane
 closure under addition
2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
 Commutative property of addition
3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
 Associate property of addition
4. $(\mathbf{u} + 0) = \mathbf{u}$
 Additive identity
5. $\mathbf{u} + (-1)\mathbf{u} = \mathbf{0}$
 Additive inverse
6. $c\mathbf{u}$ is a vector in the plane
 closure under scalar multiplication
7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
 Distributive property of scalar mult.
8. $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
 Distributive property of scalar mult.
9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
 Associate property of scalar mult.
10. $1(\mathbf{u}) = \mathbf{u}$
 Multiplicative identity property

Proof. Easy, see the textbook, page 182.

4.1.1 Vectors in \mathbb{R}^n

The discussion of vectors in plane can now be extended to a discussion of vectors in n–space. A vector in n–space is represented by an ordered n–tuple (x_1, x_2, \ldots, x_n).

The set of all ordered n–tuples is called the n–space and is denoted by \mathbb{R}^n. So,

1. $\mathbb{R}^1 = 1$ – space = set of all real numbers,
2. \(\mathbb{R}^2 = 2\text{-}space = \) set of all ordered pairs \((x_1, x_2)\) of real numbers

3. \(\mathbb{R}^3 = 3\text{-}space = \) set of all ordered triples \((x_1, x_2, x_3)\) of real numbers

4. \(\mathbb{R}^4 = 4\text{-}space = \) set of all ordered quadruples \((x_1, x_2, x_3, x_4)\) of real numbers. \((\text{Think of space-time.})\)

5.

6. \(\mathbb{R}^n = n\text{-}space = \) set of all ordered ordered \(n\)-tuples \((x_1, x_2, \ldots, x_n)\) of real numbers.

Remark. We do not distinguish between points in the \(n\)-space \(\mathbb{R}^n\) and vectors in \(n\)-space (defined similarly as in definition 4.1.1). This is because both are described by the same data or information. A vector in the \(n\)-space \(\mathbb{R}^n\) is denoted by (and determined by) an \(n\)-tuples \((x_1, x_2, \ldots, x_n)\) of real numbers and same for a point in \(n\)-space \(\mathbb{R}^n\). The \(i^{th}\)-entry \(x_i\) is called the \(i^{th}\)-coordinate.

Also, a point in \(n\)-space \(\mathbb{R}^n\) can be thought of as row matrix. \((\text{Some how, the textbook avoids saying this.})\) So, the addition and scalar multiplications can be defined in a similar way, as follows.

Definition 4.1.3 Let \(\mathbf{u} = (u_1, u_2, \ldots, u_n) \) and \(\mathbf{v} = (v_1, v_2, \ldots, v_n) \) be vectors in \(\mathbb{R}^n\). The sum of these two vectors is defined as the vector

\[
\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, \ldots, u_n + v_n).
\]

For a scalar \(c\), define scalar multiplications, as the vector

\[
c \mathbf{u} = (cu_1, cu_2, \ldots, cu_n).
\]

Also, we define negative of \(\mathbf{u}\) as the vector

\[
-\mathbf{u} = (-1)(u_1, u_2, \ldots, u_n) = (-u_1, -u_2, \ldots, -u_n)
\]

and the difference

\[
\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v}) = (u_1 - v_1, u_2 - v_2, \ldots, u_n - v_n).
\]
4.1. VECTORS IN \mathbb{R}^N

Theorem 4.1.4 All the properties of theorem 4.1.2 hold, for any three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in n-space \mathbb{R}^n and scalars c, d.

Theorem 4.1.5 Let \mathbf{v} be a vector in \mathbb{R}^n and let c be a scalar. Then,

1. $\mathbf{v} + 0 = \mathbf{v}$.

 (*Because of this property, 0 is called the **additive identity** in \mathbb{R}^n.*)

 Further, the additive identity is unique. That means, if $\mathbf{v} + \mathbf{u} = \mathbf{v}$ for all vectors \mathbf{v} in \mathbb{R}^n, then $\mathbf{u} = 0$.

2. Also $\mathbf{v} + (-\mathbf{v}) = 0$.

 (*Because of this property, $-\mathbf{v}$ is called the **additive inverse** of \mathbf{v}.*)

 Further, the additive inverse of \mathbf{v} is unique. This means that $\mathbf{v} + \mathbf{u} = 0$ for some vector \mathbf{u} in \mathbb{R}^n, then $\mathbf{u} = -\mathbf{v}$.

3. $0\mathbf{v} = 0$.

 Here the 0 on left side is the scalar zero and the bold $\mathbf{0}$ is the vector zero in \mathbb{R}^n.

4. $c0 = 0$.

5. If $c\mathbf{v} = \mathbf{0}$, then $c = 0$ or $\mathbf{v} = \mathbf{0}$.

6. $-(-\mathbf{v}) = \mathbf{v}$.

Proof. To prove that additive identity is unique, suppose $\mathbf{v} + \mathbf{u} = \mathbf{v}$ for all \mathbf{v} in \mathbb{R}^n. Then, taking $\mathbf{v} = 0$, we have $0 + \mathbf{u} = 0$. Therefore, $\mathbf{u} = 0$.

To prove that additive inverse is unique, suppose $\mathbf{v} + \mathbf{u} = 0$ for some vector \mathbf{u}. Add $-\mathbf{v}$ on both sides, from left side. So,

$$-\mathbf{v} + (\mathbf{v} + \mathbf{u}) = -\mathbf{v} + 0$$
CHAPTER 4. VECTOR SPACES

So,

\((-v + v) + u = -v\)

So,

\(0 + u = -v \quad \text{So,} \quad u = -v.\)

We will also prove (5). So suppose \(cv = 0\). If \(c = 0\), then there is nothing to prove. So, we assume that \(c \neq 0\). Multiply the equation by \(c^{-1}\), we have \(c^{-1}(cv) = c^{-1}0\). Therefore, by associativity, we have \((c^{-1}c)v = 0\). Therefore \(1v = 0\) and so \(v = 0\).

The other statements are easy to see. The proof is complete. ■

Remark. We denote a vector \(u\) in \(\mathbb{R}^n\) by a row \(u = (u_1, u_2, \ldots, u_n)\). As I said before, it can be thought of a row matrix

\[
 u = \begin{bmatrix} u_1 & u_2 & \ldots & u_n \end{bmatrix}.
\]

In some other situation, it may even be convenient to denote it by a column matrix:

\[
 u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}.
\]

Obvioulsy, we cannot mix the two (in fact, three) different ways.

Reading assignment: Read [Textbook, Example 6, p. 187].

Exercise 4.1.6 (Ex. 46, p. 189) Let \(u = (0, 0, -8, 1)\) and \(v = (1, -8, 0, 7)\). Find \(w\) such that \(2u + v - 3w = 0\).

Solution: We have

\[
 w = \frac{2}{3}u + \frac{1}{3}v = \frac{2}{3}(0, 0, -8, 1) + \frac{1}{3}(1, -8, 0, 7) = \left(\frac{1}{3}, -\frac{8}{3}, -\frac{16}{3}, 3 \right).
\]

Exercise 4.1.7 (Ex. 50, p. 189) Let \(u_1 = (1, 3, 2, 1), u_2 = (2, -2, -5, 4), u_3 = (2, -1, 3, 6)\). If \(v = (2, 5, -4, 0)\), write \(v\) as a linear combination of \(u_1, u_2, u_3\). If it is not possible say so.
4.1. VECTORS IN \mathbb{R}^N

Solution: Let $\mathbf{v} = a\mathbf{u}_1 + b\mathbf{u}_2 + c\mathbf{u}_3$. We need to solve for a, b, c. Writing the equation explicitly, we have

$$(2, 5, -4, 0) = a(1, 3, 2, 1) + b(2, -2, -5, 4) + c(2, -1, 3, 6).$$

Therefore

$$(2, 5, -4, 0) = (a + 2b + 2c, 3a - 2b - c, 2a - 5b + 3c, a + 4b + 6c)$$

Equating entry-wise, we have system of linear equation

\[
\begin{align*}
 a + 2b + 2c &= 2 \\
 3a - 2b - c &= 5 \\
 2a - 5b + 3c &= -4 \\
 a + 4b + 6c &= 0
\end{align*}
\]

We write the augmented matrix:

$$
\begin{bmatrix}
1 & 2 & 2 & 2 \\
3 & -2 & -1 & 5 \\
2 & -5 & 3 & -4 \\
1 & 4 & 6 & 0
\end{bmatrix}
$$

We use TI, to reduce this matrix to Gauss-Jordan form:

$$
\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{bmatrix}
$$

So, the system is consistent and $a = 2, b = 1, c = -1$. Therefore

$$\mathbf{v} = 2\mathbf{u}_1 + \mathbf{u}_2 - \mathbf{u}_3,$$

which can be checked directly,
4.2 Vector spaces

Homework: [Textbook, §4.2 Ex.3, 9, 15, 19, 21, 23, 25, 27, 35; p.197].

The main point in the section is to define vector spaces and talk about examples.

The following definition is an abstraction of theorems 4.1.2 and theorem 4.1.4.

Definition 4.2.1 Let V be a set on which two operations (vector addition and scalar multiplication) are defined. If the listed axioms are satisfied for every u, v, w in V and scalars c and d, then V is called a **vector space** (over the reals \mathbb{R}).

1. Addition:

 (a) $u + v$ is a vector in V (closure under addition).

 (b) $u + v = v + u$ (Commutative property of addition).

 (c) $(u + v) + w = u + (v + w)$ (Associative property of addition).

 (d) There is a **zero vector** $\mathbf{0}$ in V such that for every u in V we have $(u + \mathbf{0}) = u$ (Additive identity).

 (e) For every u in V, there is a vector in V denoted by $-u$ such that $u + (-u) = \mathbf{0}$ (Additive inverse).

2. Scalar multiplication:

 (a) cu is in V (closure under scalar multiplication).
4.2. VECTOR SPACES

(b) \(c(u + v) = cu + cv \) (Distributive property of scalar mult.).

(c) \((c + d)u = cu + du \) (Distributive property of scalar mult.).

(d) \(c(du) = (cd)u \) (Associate property of scalar mult.).

(e) \(1(u) = u \) (Scalar identity property).

Remark. It is important to realize that a vector space consists of four entities:

1. A set \(V \) of vectors.
2. A set of scalars. In this class, it will always be the set of real numbers \(\mathbb{R} \). (Later on, this could be the set of complex numbers \(\mathbb{C} \).)
3. A vector addition denoted by +.
4. A scalar multiplication.

Lemma 4.2.2 We use the notations as in definition 4.2.1. First, the zero vector \(0 \) is unique, satisfying the property (1d) of definition 4.2.1.

Further, for any \(u \) in \(V \), the additive inverse \(-u \) is unique.

Proof. Suppose, there is another element \(\theta \) that satisfy the property (1d). Since \(0 \) satisfy (1d), we have

\[
\theta = \theta + 0 = 0 + \theta = 0.
\]

The last equality follows because \(\theta \) satisfies the property(1d).

(The proof that additive inverse of \(u \) unique is similar the proof of theorem 2.3.2, regarding matrices.) Suppose \(v \) is another additive inverse of \(u \).

\[
u + v = 0 \quad \text{and} \quad u + (-u) = 0.
\]
So.

\[-u = \mathbf{0} + (-u) = (u + v) + (-u) = v + (u + (-u)) = v + \mathbf{0} = v.\]

So, the proof is complete.

\[\Box\]

Reading assignment: Read [Textbook, Example 1-5, p. 192-]. These examples lead to the following list of important examples of vector spaces:

Example 4.2.3 Here is a collection examples of vector spaces:

1. The set \(\mathbb{R} \) of real numbers \(\mathbb{R} \) is a vector space over \(\mathbb{R} \).

2. The set \(\mathbb{R}^2 \) of all ordered pairs of real numbers is a vector space over \(\mathbb{R} \).

3. The set \(\mathbb{R}^n \) of all ordered \(n \)-tuples of real numbers is a vector space over \(\mathbb{R} \).

4. The set \(\mathcal{C}(\mathbb{R}) \) of all continuous functions defined on the real number line, is a vector space over \(\mathbb{R} \).

5. The set \(\mathcal{C}([a, b]) \) of all continuous functions defined on interval \([a, b]\) is a vector space over \(\mathbb{R} \).

6. The set \(\mathcal{P} \) of all polynomials, with real coefficients is a vector space over \(\mathbb{R} \).

7. The set \(\mathcal{P}_n \) of all polynomials of degree \(\leq n \), with real coefficients is a vector space over \(\mathbb{R} \).

8. The set \(\mathcal{M}_{m,n} \) of all \(m \times n \) matrices, with real entries, is a vector space over \(\mathbb{R} \).
4.2. VECTOR SPACES

Reading assignment: Read [Textbook, Examples 6-6].

Theorem 4.2.4 Let V be vector space over the reals \mathbb{R} and v be an element in V. Also let c be a scalar. Then,

1. $0v = 0$.
2. $c0 = 0$.
3. If $cv = 0$, then either $c = 0$ or $v = 0$.
4. $(-1)v = -v$.

Proof. We have to prove this theorem using the definition 4.2.1. Other than that, the proof will be similar to theorem 4.1.5. To prove (1), write $w = 0v$. We have

$$w = 0v = (0 + 0)v = 0v + 0v = w + w \quad \text{(by distributivity Prop. (2c)).}$$

Add $-w$ to both sides

$$w + (-w) = (w + w) + (-w)$$

By (1e) of 4.2.1, we have

$$0 = w + (w + (-w)) = w + 0 = w.$$

So, (1) is proved. The proof of (2) will be exactly similar.

To prove (3), suppose $cv = 0$. If $c = 0$, then there is nothing to prove. So, we assume that $c \neq 0$. Multiply the equation by c^{-1}, we have $c^{-1}(cv) = c^{-1}0$. Therefore, by associativity, we have $(c^{-1}c)v = 0$. Therefore $1v = 0$ and so $v = 0$.

To prove (4), we have

$$v + (-1)v = 1v + (-1)v = (1 - 1)v = 0.$$

This completes the proof.
Exercise 4.2.5 (Ex. 16, p. 197) Let V be the set of all fifth-degree polynomials with standard operations. Is it a vector space. Justify your answer.

Solution: In fact, V is not a vector space. Because V is not closed under addition (axiom (1a) of definition 4.2.1 fails): $f = x^5 + x - 1$ and $g = -x^5$ are in V but $f + g = (x^5 + x - 1) - x^5 = x - 1$ is not in V.

Exercise 4.2.6 (Ex. 20, p. 197) Let $V = \{(x, y) : x \geq 0, y \geq 0\}$ with standard operations. Is it a vector space. Justify your answer.

Solution: In fact, V is not a vector space. Not every element in V has an additive inverse (axiom i(1e) of 4.2.1 fails): $-(1, 1) = (-1, -1)$ is not in V.

Exercise 4.2.7 (Ex. 22, p. 197) Let $V = \{(x, \frac{1}{2}x) : x$ real number$\}$ with standard operations. Is it a vector space. Justify your answer.

Solution: Yes, V is a vector space. We check all the properties in 4.2.1, one by one:

1. Addition:
 (a) For real numbers x, y, We have
 \[
 \left(x, \frac{1}{2}x \right) + \left(y, \frac{1}{2}y \right) = \left(x + y, \frac{1}{2}(x + y) \right).
 \]
 So, V is closed under addition.
 (b) Clearly, addition is closed under addition.
 (c) Clearly, addition is associative.
 (d) The element $0 = (0, 0)$ satisfies the property of the zero element.
(e) We have $-(x, \frac{1}{2}x) = (-x, \frac{1}{2}(-x))$. So, every element in V has an additive inverse.

2. Scalar multiplication:

(a) For a scalar c, we have $c \left(x, \frac{1}{2}x \right) = \left(cx, \frac{1}{2}cx \right)$. So, V is closed under scalar multiplication.

(b) The distributivity $c(u + v) = cu + cv$ works for u, v in V.

(c) The distributivity $(c + d)u = cu + du$ works, for u in V and scalars c, d.

(d) The associativity $c(du) = (cd)u$ works.

(e) Also $1u = u$.

4.3 Subspaces of Vector spaces

We will skip this section, after we just mention the following.

Definition 4.3.1 A nonempty subset W of a vector space V is called a subspace of V if W is a vector space under the operations addition and scalar multiplication defined in V.

Example 4.3.2 Here are some obvious examples:

1. Let $W = \{(x, 0) : x \text{ is real number}\}$. Then $W \subseteq \mathbb{R}^2$. (*The notation \subseteq reads as ‘subset of.’*) It is easy to check that W is a subspace of \mathbb{R}^2.
2. Let W be the set of all points on any given line $y = mx$ through the origin in the plane \mathbb{R}^2. Then, W is a subspace of \mathbb{R}^2.

3. Let P_2, P_3, P_n be vector space of polynomials, respectively, of degree less or equal to 2, 3, n. (See example 4.2.3.) Then P_2 is a subspace of P_3 and P_n is a subspace of P_{n+1}.

Theorem 4.3.3 Suppose V is a vector space over \mathbb{R} and $W \subseteq V$ is a **nonempty** subset of V. Then W is a subspace of V if and only if the following two closure conditions hold:

1. If u, v are in W, then $u + v$ is in W.
2. If u is in W and c is a scalar, then cu is in W.

Reading assignment: Read [Textbook, Examples 1-5].
4.4 Spanning sets and linear independence

Homework. [Textbook, §4.4, Ex. 27, 29, 31; p. 219].

The main point here is to write a vector as linear combination of a given set of vectors.

Definition 4.4.1 A vector \(\mathbf{v} \) in a vector space \(V \) is called a linear combination of vectors \(\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k \) in \(V \) if \(\mathbf{v} \) can be written in the form

\[
\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_k \mathbf{u}_k,
\]

where \(c_1, c_2, \ldots, c_k \) are scalars.

Definition 4.4.2 Let \(V \) be a vector space over \(\mathbb{R} \) and \(S = \{ \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \} \) be a subset of \(V \). We say that \(S \) is a spanning set of \(V \) if every vector \(\mathbf{v} \) of \(V \) can be written as a linear combination of vectors in \(S \). In such cases, we say that \(S \) spans \(V \).

Definition 4.4.3 Let \(V \) be a vector space over \(\mathbb{R} \) and \(S = \{ \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \} \) be a subset of \(V \). Then the span of \(S \) is the set of all linear combinations of vectors in \(S \),

\[
\text{span}(S) = \{ c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k : c_1, c_2, \ldots, c_k \text{ are scalars} \}.
\]

1. The span of \(S \) is denoted by \(\text{span}(S) \) as above or \(\text{span}\{ \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \} \).

2. If \(V = \text{span}(S) \), then say \(V \) is spanned by \(S \) or \(S \) spans \(V \).
Theorem 4.4.4 Let V be a vector space over \mathbb{R} and $S = \{v_1, v_2, \ldots, v_k\}$ be a subset of V. Then $\text{span}(S)$ is a subspace of V.

Further, $\text{span}(S)$ is the smallest subspace of V that contains S. This means, if W is a subspace of V and W contains S, then $\text{span}(S)$ is contained in W.

Proof. By theorem 4.3.3, to prove that $\text{span}(S)$ is a subspace of V, we only need to show that $\text{span}(S)$ is closed under addition and scalar multiplication. So, let u, v be two elements in $\text{span}(S)$. We can write

$$u = c_1v_1 + c_2v_2 + \cdots + c_kv_k$$
and

$$v = d_1v_1 + d_2v_2 + \cdots + d_kv_k$$

where $c_1, c_2, \ldots, c_k, d_1, d_2, \ldots, d_k$ are scalars. It follows

$$u + v = (c_1 + d_1)v_1 + (c_2 + d_2)v_2 + \cdots + (c_k + d_k)v_k$$

and for a scalar c, we have

$$cu = (cc_1)v_1 + (cc_2)v_2 + \cdots + (cc_k)v_k.$$

So, both $u + v$ and cu are in $\text{span}(S)$, because the are linear combination of elements in S. So, $\text{span}(S)$ is closed under addition and scalar multiplication, hence a subspace of V.

To prove that $\text{span}(S)$ is smallest, in the sense stated above, let W be subspace of V that contains S. We want to show $\text{span}(S)$ is contained in W. Let u be an element in $\text{span}(S)$. Then,

$$u = c_1v_1 + c_2v_2 + \cdots + c_kv_k$$

for some scalars c_i. Since $S \subseteq W$, we have $v_i \in W$. Since W is closed under addition and scalar multiplication, u is in W. So, $\text{span}(S)$ is contained in W. The proof is complete.

Reading assignment: Read [Textbook, Examples 1-6, p. 207-].
4.4. SPANNING SETS AND LINEAR INDEPENDENCE

4.4.1 Linear dependence and independence

Definition 4.4.5 Let V be a vector space. A set of elements (vectors) $S = \{v_1, v_2, \ldots, v_k\}$ is said to be linearly independent if the equation

$$c_1 v_1 + c_2 v_2 + \cdots + c_k v_k = 0$$

has only trivial solution

$$c_1 = 0, c_2 = 0, \ldots, c_k = 0.$$

We say S is linearly dependent, if S is not linearly independent. (This means, that S is said to be linearly dependent, if there is at least one nontrivial (i.e. nonzero) solutions to the above equation.)

Testing for linear independence

Suppose V is a subspace of the n–space \mathbb{R}^n. Let $S = \{v_1, v_2, \ldots, v_k\}$ be a set of elements (i.e. vectors) in V. To test whether S is linearly independent or not, we do the following:

1. From the equation

$$c_1 v_1 + c_2 v_2 + \cdots + c_k v_k = 0,$$

write a homogeneous system of equations in variables c_1, c_2, \ldots, c_k.

2. Use Gaussian elimination (with the help of TI) to determine whether the system has a unique solutions.

3. If the system has only the trivial solution

$$c_1 = 0, c_2 = 0, \ldots, c_k = 0,$$

then S is linearly independent. Otherwise, S is linearly dependent.

Reading assignment: Read [Textbook, Examples 9-12, p. 214-216].
Exercise 4.4.6 (Ex. 28. P. 219) Let \(S = \{(6, 2, 1), (-1, 3, 2)\} \). Determine, if \(S \) is linearly independent or dependent?

Solution: Let

\[
c(6, 2, 1) + d(-1, 3, 2) = (0, 0, 0).
\]

If this equation has only trivial solutions, then it is linearly independent. This equation gives the following system of linear equations:

\[
\begin{align*}
6c - d &= 0 \\
2c + 3d &= 0 \\
c + 2d &= 0
\end{align*}
\]

The augmented matrix for this system is

\[
\begin{bmatrix}
6 & -1 & 0 \\
2 & 3 & 0 \\
1 & 2 & 0
\end{bmatrix}.
\]

its gaussian–Jordan form:

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

So, \(c = 0, d = 0 \). The system has only trivial (i.e. zero) solution. We conclude that \(S \) is linearly independent.

Exercise 4.4.7 (Ex. 30. P. 219) Let

\[
S = \left\{ \left(\begin{array}{c} 3 \\ 4 \\ 2 \end{array} \right), \left(\begin{array}{c} 3 \\ 7 \\ 2 \end{array} \right), \left(\begin{array}{c} -3 \\ 6 \\ 2 \end{array} \right) \right\}.
\]

Determine, if \(S \) is linearly independent or dependent?

Solution: Let

\[
a \left(\begin{array}{c} 3 \\ 4 \\ 2 \end{array} \right) + b \left(\begin{array}{c} 3 \\ 7 \\ 2 \end{array} \right) + c \left(\begin{array}{c} -3 \\ 6 \\ 2 \end{array} \right) = (0, 0, 0).
\]

If this equation has only trivial solutions, then it is linearly independent. This equation gives the following system of linear equations:

\[
\begin{align*}
\frac{3}{4}a + 3b - \frac{3}{2}c &= 0 \\
\frac{5}{2}a + 4b + 6c &= 0 \\
\frac{3}{2}a + \frac{7}{2}b + 2c &= 0
\end{align*}
\]
The augmented matrix for this system is
\[
\begin{bmatrix}
\frac{3}{4} & 3 & -\frac{3}{2} & 0 \\
\frac{4}{2} & 4 & 6 & 0 \\
\frac{7}{2} & 2 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}.
\]

So, \(a = 0, b = 0, c = 0 \). The system has only trivial (i.e. zero) solution. We conclude that \(S \) is linearly independent.

Exercise 4.4.8 (Ex. 32. P. 219) Let
\[
S = \{(1, 0, 0), (0, 4, 0), (0, 0, -6), (1, 5, -3)\}.
\]

Determine, if \(S \) is linearly independent or dependent?

Solution: Let
\[
c_1(1, 0, 0) + c_2(0, 4, 0) + c_3(0, 0, -6) + c_4(1, 5, -3) = (0, 0, 0).
\]

If this equation has only trivial solutions, then it is linearly independent. This equation gives the following system of linear equations:
\[
\begin{align*}
c_1 + c_4 &= 0 \\
4c_2 &= 0 \\
-6c_3 - 3c_4 &= 0
\end{align*}
\]

The augmented matrix for this system is
\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 0 \\
0 & 4 & 0 & 5 & 0 \\
0 & 0 & -6 & -3 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1.25 & 0 \\
0 & 0 & 1 & .5 & 0
\end{bmatrix}.
\]

Correspondingly:
\[
c_1 + c_4 = 0, \quad c_2 + 1.25c_4 = 0, \quad c_3 + .5c_4 = 0.
\]
With \(c_4 = t \) as parameter, we have
\[
c_1 = -t, \quad c_2 = -1.25t, \quad c_3 = .5t, \quad c_4 = t.
\]
The equation above has nontrivial (i.e. nonzero) solutions. So, \(S \) is linearly dependent.

Theorem 4.4.9 Let \(V \) be a vector space and \(S = \{v_1, v_2, \ldots, v_k\}, k \geq 2 \) a set of elements (vectors) in \(V \). Then \(S \) is linearly dependent if and only if one of the vectors \(v_j \) can be written as a linear combination of the other vectors in \(S \).

Proof. \((\Rightarrow)\) : Assume \(S \) is linearly dependent. So, the equation
\[
c_1v_1 + c_2v_2 + \cdots + c_kv_k = 0
\]
has a nonzero solution. This means, at least one of the \(c_i \) is nonzero. Let \(c_r \) is the last one, with \(c_r \neq 0 \). So,
\[
c_1v_1 + c_2v_2 + \cdots + c_rv_r = 0
\]
and
\[
v_r = -\frac{c_1}{c_r}v_1 - \frac{c_2}{c_r}v_2 - \cdots - \frac{c_{r-1}}{c_r}v_{r-1}.
\]
So, \(v_r \) is a linear combination of other vectors and this implication is proved.

\((\Rightarrow)\) : to prove the other implication, we assume that \(v_r \) is linear combination of other vectors. So
\[
v_r = (c_1v_1 + c_2v_2 + \cdots + c_{r-1}v_{r-1}) + (c_{r+1}v_{r+1} + \cdots + c_kv_k).
\]
So,
\[
(c_1v_1 + c_2v_2 + \cdots + c_{r-1}v_{r-1}) - v_r + (c_{r+1}v_{r+1} + \cdots + c_kv_k) = 0.
\]
The left hand side is a nontrivial (i.e. nonzero) linear combination, because \(v_r \) has coefficient \(-1\). Therefore, \(S \) is linearly dependent. This completes the proof. \(\blacksquare\)
4.5 Basis and Dimension

Homework: [Textbook, §4.5 Ex. 1, 3, 7, 11, 15, 19, 21, 23, 25, 28, 35, 37, 39, 41, 45, 47, 49, 53, 59, 63, 65, 71, 73, 75, 77, page 231].

The main point of the section is

1. To define basis of a vector space.
2. To define dimension of a vector space.

These are, probably, the two most fundamental concepts regarding vector spaces.
CHAPTER 4. VECTOR SPACES

Definition 4.5.1 Let V be a vector space and $S = \{v_1, v_2, \ldots, v_k\}$ be a set of elements (vectors) in V. We say that S is a basis of V if

1. S spans V and
2. S is linearly independent.

Remark. Here are some comments about finite and infinite basis of a vector space V:

1. We avoided discussing infinite spanning set S and when an infinite S is linearly independent. We will continue to avoid to do so. (1) An infinite set S is said span V, if each element $v \in V$ is a linear combination of finitely many elements in V. (2) An infinite set S is said to be linearly independent if any finitely subset of S is linearly independent.

2. We say that a vector space V is finite dimensional, if V has a basis consisting of finitely many elements. Otherwise, we say that V is infinite dimensional.

3. The vector space P of all polynomials (with real coefficients) has infinite dimension.

Example 4.5.2 (example 1, p 221) Most standard example of basis is the standard basis of \mathbb{R}^n.

1. Consider the vector space \mathbb{R}^2. Write

$$e_1 = (1, 0), e_2 = (0, 1).$$

Then, e_1, e_2 form a basis of \mathbb{R}^2.
2. Consider the vector space \mathbb{R}^3. Write

$$e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1).$$

Then, e_1, e_2, e_3 form a basis of \mathbb{R}^3.

Proof. First, for any vector $v = (x_1, x_2, x_3) \in \mathbb{R}^3$, we have

$$v = x_1e_1 + x_2e_2 + x_3e_3.$$

So, \mathbb{R}^3 is spanned by e_1, e_2, e_3.

Now, we prove that e_1, e_2, e_3 are linearly independent. So, suppose

$$c_1e_1 + c_2e_2 + c_3e_3 = 0 \quad OR \quad (c_1, c_2, c_3) = (0, 0, 0).$$

So, $c_1 = c_2 = c_3 = 0$. Therefore, e_1, e_2, e_3 are linearly independent. Hence e_1, e_2, e_3 forms a basis of \mathbb{R}^3. The proof is complete.

3. More generally, consider vector space \mathbb{R}^n. Write

$$e_1 = (1, 0, \ldots, 0), e_2 = (0, 1, \ldots, 0), \ldots, e_n = (0, 0, \ldots, 1).$$

Then, $e_1, e_2, e_3, \ldots, e_n$ form a basis of \mathbb{R}^n. The proof will be similar to the above proof. This basis is called the **standard basis** of \mathbb{R}^n.

Example 4.5.3 Consider

$$v_1 = (1, 1, 1), v_2 = (1, -1, 1), v_3 = (1, 1, -1) \quad in \quad \mathbb{R}^3.$$

Then v_1, v_2, v_3 form a basis for \mathbb{R}^3.
Proof. First, we prove that \(v_1, v_2, v_3 \) are linearly independent. Let

\[
c_1v_1 + c_2v_2 + c_3v_3 = 0. \quad OR \quad c_1(1, 1, 1) + c_2(1, -1, 1) + c_3(1, 1, -1) = (0, 0, 0).
\]

We have to prove \(c_1 = c_2 = c_3 = 0 \). The equations give the following system of linear equations:

\[
\begin{align*}
 c_1 + c_2 + c_3 &= 0 \\
 c_1 - c_2 + c_3 &= 0 \\
 c_1 + c_2 - c_3 &= 0
\end{align*}
\]

The augmented matrix is

\[
\begin{bmatrix}
 1 & 1 & 1 & 0 \\
 1 & -1 & 1 & 0 \\
 1 & 1 & -1 & 0 \\
\end{bmatrix}
\]

its Gauss – Jordan form

\[
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

So, \(c_1 = c_2 = c_3 = 0 \) and this establishes that \(v_1, v_2, v_3 \) are linearly independent.

Now to show that \(v_1, v_2, v_3 \) spans \(\mathbb{R}^3 \), let \(v = (x_1, x_2, x_3) \) be a vector in \(\mathbb{R}^3 \). We have to show that, we can find \(c_1, c_2, c_3 \) such that

\[
(x_1, x_2, x_3) = c_1v_1 + c_2v_2 + c_3v_3
\]

OR

\[
(x_1, x_2, x_3) = c_1(1, 1, 1) + c_2(1, -1, 1) + c_3(1, 1, -1).
\]

This gives the system of linear equations:

\[
\begin{bmatrix}
 c_1 + c_2 + c_3 \\
 c_1 - c_2 + c_3 \\
 c_1 + c_2 - c_3
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{bmatrix}
\]

OR

\[
\begin{bmatrix}
 1 & 1 & 1 \\
 1 & -1 & 1 \\
 1 & 1 & -1
\end{bmatrix}
\begin{bmatrix}
 c_1 \\
 c_2 \\
 c_3
\end{bmatrix}
= \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{bmatrix}
\]
4.5. BASIS AND DIMENSION

The coefficient matrix

\[
A = \begin{bmatrix}
1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{bmatrix}
\]

has inverse \(A^{-1} = \begin{bmatrix}
0 & .5 & .5 \\
.5 & -.5 & 0 \\
.5 & 0 & -.5
\end{bmatrix}. \)

So, the above system has the solution:

\[
\begin{bmatrix}
c_1 \\
c_2 \\
c_3
\end{bmatrix} = A^{-1} \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
0 & .5 & .5 \\
.5 & -.5 & 0 \\
.5 & 0 & -.5
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}.
\]

So, each vector \((x_1, x_2, x_3)\) is in the span of \(v_1, v_2, v_3\). So, they form a basis of \(\mathbb{R}^3\). The proof is complete.

\[\blacksquare\]

Reading assignment: Read [Textbook, Examples 1-5, p. 221-224].

Theorem 4.5.4 Let \(V\) be a vector space and \(S = \{v_1, v_2, \ldots, v_n\}\) be a basis of \(V\). Then every vector \(v\) in \(V\) can be written in one and only one way as a linear combination of vectors in \(S\). (In other words, \(v\) can be written as a unique linear combination of vectors in \(S\).)

Proof. Since \(S\) spans \(V\), we can write \(v\) as a linear combination

\[v = c_1v_1 + c_2v_2 + \cdots + c_nv_n\]

for scalars \(c_1, c_2, \ldots, c_n\). To prove uniqueness, also let

\[v = d_1v_1 + d_2v_2 + \cdots + d_nv_n\]

for some other scalars \(d_1, d_2, \ldots, d_n\). Subtracting, we have

\[(c_1 - d_1)v_1 + (c_2 - d_2)v_2 + \cdots + (c_n - d_n)v_n = 0.\]

Since, \(v_1, v_2, \ldots, v_n\) are also linearly independent, we have

\[c_1 - d_1 = 0, c_2 - d_2 = 0, \ldots, c_n - d_n = 0\]
CHAPTER 4. VECTOR SPACES

OR

\[c_1 = d_1, c_2 = d_2, \ldots, c_n = d_n. \]

This completes the proof.

Theorem 4.5.5 Let \(V \) be a vector space and \(S = \{v_1, v_2, \ldots, v_n\} \) be a basis of \(V \). Then every set of vectors in \(V \) containing more than \(n \) vectors in \(V \) is linearly dependent.

Proof. Suppose \(S_1 = \{u_1, u_2, \ldots, u_m\} \) ne a set of \(m \) vectors in \(V \), with \(m > n \). We are requaired to prove that the zero vector \(0 \) is a nontrivial (i.e. nonzero) linear combination of elements in \(S_1 \). Since \(S \) is a basis, we have

\[
\begin{align*}
 u_1 &= c_{11}v_1 + c_{12}v_2 + \cdots + c_{1n}v_n \\
 u_2 &= c_{21}v_1 + c_{22}v_2 + \cdots + c_{2n}v_n \\
 & \vdots \vdots \vdots \vdots \vdots \\
 u_m &= c_{m1}v_1 + c_{m2}v_2 + \cdots + c_{mn}v_n
\end{align*}
\]

Consider the system of linear equations

\[
\begin{align*}
 c_{11}x_1 + c_{12}x_2 + \cdots + c_{1n}x_m &= 0 \\
 c_{12}x_1 + c_{22}x_2 + \cdots + c_{2n}x_m &= 0 \\
 & \vdots \vdots \vdots \vdots \vdots \\
 c_{1n}x_1 + c_{2n}x_2 + \cdots + c_{mn}x_m &= 0
\end{align*}
\]

which is

\[
\begin{bmatrix}
 c_{11} & c_{12} & \cdots & c_{1n} \\
 c_{12} & c_{22} & \cdots & c_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{1n} & c_{2n} & \cdots & c_{mn}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_m
\end{bmatrix}
=
\begin{bmatrix}
 0 \\
 0 \\
 \vdots \\
 0
\end{bmatrix}
\]

Since \(m > n \), this homegeneous system of linear equations has fewer equations than number of variables. So, the system has a nonzero solution (see [Textbook, theorem 1.1, p 25]). It follows that

\[x_1u_1 + x_2u_2 + \cdots + x_mu_m = 0. \]
4.5. BASIS AND DIMENSION

We justify it as follows: First,

$$\begin{bmatrix} u_1 & u_2 & \ldots & u_m \end{bmatrix} = \begin{bmatrix} v_1 & v_2 & \ldots & v_n \end{bmatrix} \begin{bmatrix} c_{11} & c_{22} & \cdots & c_{m1} \\ c_{12} & c_{22} & \cdots & c_{m2} \\ \cdots & \cdots & \cdots & \cdots \\ c_{1n} & c_{2n} & \cdots & c_{mn} \end{bmatrix}$$

and then

$$x_1u_1 + x_2u_2 + \ldots + x_mu_m = \begin{bmatrix} u_1 & u_2 & \ldots & u_m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

which is

$$= \begin{bmatrix} v_1 & v_2 & \ldots & v_n \end{bmatrix} \begin{bmatrix} c_{11} & c_{22} & \cdots & c_{m1} \\ c_{12} & c_{22} & \cdots & c_{m2} \\ \cdots & \cdots & \cdots & \cdots \\ c_{1n} & c_{2n} & \cdots & c_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

which is

$$= \begin{bmatrix} v_1 & v_2 & \ldots & v_n \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = 0.$$

Alternately, at your level the proof will be written more explicitly as follows: $x_1u_1 + x_2u_2 + \ldots + x_mu_m =

$$\sum_{j=1}^{m} x_j u_j = \sum_{j=1}^{m} x_j \left(\sum_{i=1}^{n} c_{ij} v_i \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} c_{ij} x_j \right) v_i = \sum_{i=1}^{n} 0 v_i = 0.$$

The proof is complete.

Theorem 4.5.6 Suppose V is a vector space and V has a basis with n vectors. Then, every basis has n vectors.
Proof. Let

\[S = \{v_1, v_2, \ldots, v_n\} \quad \text{and} \quad S_1 = \{u_1, u_2, \ldots, u_m\} \]

be two bases of \(V \). Since \(S \) is a basis and \(S_1 \) is linearly independent, by theorem 4.5.5, we have \(m \leq n \). Similarly, \(n \leq m \). So, \(m = n \). The proof is complete.

Definition 4.5.7 If a vector space \(V \) has a basis consisting of \(n \) vectors, then we say that dimension of \(V \) is \(n \). We also write \(\dim(V) = n \). If \(V = \{0\} \) is the zero vector space, then the dimension of \(V \) is defined as zero.

(We say that the dimension of \(V \) is equal to the ‘cardinality’ of any basis of \(V \). The word ‘cardinality’ is used to mean ‘the number of elements’ in a set.)

Theorem 4.5.8 Suppose \(V \) is a vector space of dimension \(n \).

1. Suppose \(S = \{v_1, v_2, \ldots, v_n\} \) is a set of \(n \) linearly independent vectors. Then \(S \) is basis of \(V \).

2. Suppose \(S = \{v_1, v_2, \ldots, v_n\} \) is a set of \(n \) vectors. If \(S \) spans \(V \), then \(S \) is basis of \(V \).

Remark. The theorem 4.5.8 means that, if dimension of \(V \) matches with the number of (i.e. ‘cardinality’ of) \(S \), then to check if \(S \) is a basis of \(V \) or not, you have check only one of the two required properties (1) independece or (2) spannning.

Example 4.5.9 Here are some standard examples:

1. We have \(\dim(\mathbb{R}) = 1 \). This is because \(\{1\} \) forms a basis for \(\mathbb{R} \).
2. We have dim(\mathbb{R}^2) = 2. This is because the standard basis

$$e_1 = (1, 0), e_2 = (0, 1)$$

consist of two elements.

3. We have dim(\mathbb{R}^3) = 3. This is because the standard basis

$$e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)$$

consist of three elements.

4. More generally, dim(\mathbb{R}^n) = n. This is because the standard basis

$$e_1 = (1, 0, 0, \ldots, 0), e_2 = (0, 1, 0, \ldots, 0), \ldots, e_n = (0, 0, \ldots, 1)$$

consist of n elements.

5. The dimension of the vector space $\mathbb{M}_{m,n}$ of all $m \times n$ matrices is mn. Notationally, dim($\mathbb{M}_{m,n}$) = mn. To see this, let e_{ij} be the $m \times n$ matrix whose $(i, j)^{th}$ entry is 1 and all the rest of the entries are zero. Then,

$$S = \{e_{ij} : i = 1, 2, \ldots, m; j = 1, 2, \ldots, n\}$$

forms a basis of $\mathbb{M}_{m,n}$ and S has mn elements.

6. Also recall, if a vector space V does not have a finite basis, we say V is infinite dimensional.

 (a) The vector space \mathbb{P} of all polynomials (with real coefficients)
 has infinite dimension.

 (b) The vector space $C(\mathbb{R})$ of all continuous real valued functions
 on real line \mathbb{R} has infinite dimension.
CHAPTER 4. VECTOR SPACES

Exercise 4.5.10 (Ex. 4 (changed), p. 230) Write down the standard basis of the vector space $\mathbb{M}_{3,2}$ of all 3×2-matrices with real entries.

Solution: Let e_{ij} be the 3×2-matrix, whose $(i,j)^{th}$-entry is 1 and all other entries are zero. Then,

$$\{e_{11}, e_{12}, e_{21}, e_{22}, e_{31}, e_{32}\}$$

forms a basis of $\mathbb{M}_{3,2}$. More explicitly,

$$e_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad e_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad e_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$$

and

$$e_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad e_{31} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad e_{33} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

It is easy to verify that these vectors in $\mathbb{M}_{3,2}$ spans $\mathbb{M}_{3,2}$ and are linearly independent. So, they form a basis.

Exercise 4.5.11 (Ex. 8. p. 230) Explain, why the set $S = \{(−1,2),(1, −2),(2, 4)\}$ is not a basis of \mathbb{R}^2?

Solution: Note

$$(−1,2) + (1,−2) + 0(2,4) = (0,0).$$

So, these three vectors are not linearly independent. So, S is not a basis of \mathbb{R}^2.

Alternate argument: We have $\dim(\mathbb{R}^2) = 2$ and S has 3 elements. So, by theorem 4.5.6 above S cannot be a basis.
Exercise 4.5.12 (Ex. 16. p. 230) Explain, why the set

\[S = \{(2,1,-2), (-2,-1,2), (4,2,-4)\} \]

is not a basis of \(\mathbb{R}^3 \)?

Solution: Note

\[(4,2,-4) = (2,1,-2) - (-2,-1,2) \]

OR

\[(2,1,-2) - (-2,-1,2) - (4,2,-4) = (0,0,0). \]

So, these three vectors are linearly dependent. So, \(S \) is not a basis of \(\mathbb{R}^3 \).

Exercise 4.5.13 (Ex. 24. p. 230) Explain, why the set

\[S = \{6x - 3, 3x^2, 1 - 2x - x^2\} \]

is not a basis of \(\mathbb{P}_2 \)?

Solution: Note

\[1 - 2x - x^2 = -\frac{1}{3}(6x - 3) - \frac{1}{3}(3x^2) \]

OR

\[(1 - 2x - x^2) + \frac{1}{3}(6x - 3) + \frac{1}{3}(3x^2) = 0. \]

So, these three vectors are linearly dependent. So, \(S \) is not a basis of \(\mathbb{P}_2 \).

Exercise 4.5.14 (Ex. 36,p.231) Determine, whether

\[S = \{(1,2), (1,-1)\} \]
is a basis of \mathbb{R}^2 or not?

Solution: We will show that S is linearly independent. Let

$$a(1, 2) + b(1, -1) = (0, 0).$$

Then

$$a + b = 0, \quad \text{and} \quad 2a - b = 0.$$

Solving, we get $a = 0, b = 0$. So, these two vectors are linearly independent. We have $\dim(\mathbb{R}^2) = 2$. Therefore, by theorem 4.5.8, S is a basis of \mathbb{R}^2.

Exercise 4.5.15 (Ex. 40. p.231) Determine, whether

$$S = \{(0, 0, 0), (1, 5, 6), (6, 2, 1)\}$$

is a basis of \mathbb{R}^3 or not?

Solution: We have

$$1.(0, 0, 0) + 0.(1, 5, 6) + 0.(6, 2, 1) = (0, 0, 0).$$

So, S is linearly dependent and hence is not a basis of \mathbb{R}^3.

Remark. *In fact, any subset S of a vector space V that contains 0 is linearly dependent.*

Exercise 4.5.16 (Ex. 46. p.231) Determine, whether

$$S = \{4t - t^2, 5 + t^3, 3t + 5, 2t^3 - 3t^2\}$$

is a basis of \mathbb{P}_3 or not?

Solution: Note the standard basis

$$\{1, t, t^2, t^3\}$$
of \(P_3 \) has four elements. So, \(\dim(\mathbb{P}_3) = 4 \). Because of theorem 4.5.8, we will try to check, if \(S \) is linearly independent or not. So, let

\[
c_1(4t - t^2) + c_2(5 + t^3) + c_3(3t + 5) + c_4(2t^3 - 3t^2) = 0
\]

for some scalars \(c_1, c_2, c_3, c_4 \). If we simplify, we get

\[
(5c_2 + 5c_3) + (4c_1 + 3c_3)t + (-c_1 - 3c_4)t^2 + (c_2 + 2c_4)t^3 = 0
\]

Recall, a polynomial is zero if and only if all the coefficients are zero. So, we have

\[
\begin{align*}
5c_2 + 5c_3 &= 0 \\
4c_1 + 3c_3 &= 0 \\
-c_1 - 3c_4 &= 0 \\
c_2 + 2c_4 &= 0
\end{align*}
\]

The augmented matrix is

\[
\begin{bmatrix}
0 & 5 & 5 & 0 & 0 \\
4 & 0 & 3 & 0 & 0 \\
-1 & 0 & 0 & -3 & 0 \\
0 & 1 & 0 & 2 & 0
\end{bmatrix}
\text{its Gauss–Jordan form}
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

Therefore, \(c_1 = c_2 = c_3 = c_4 = 0 \). Hence \(S \) is linearly independent. So, by theorem 4.5.8, \(S \) is a basis of \(\mathbb{P}_3 \).

Exercise 4.5.17 (Ex. 60. p.231) Determine the dimension of \(\mathbb{P}_4 \).

Solution: Recall, \(\mathbb{P}_4 \) is the vector space of all polynomials of degree \(\leq 4 \). We claim that that

\[
S = \{1, t, t^2, t^3, t^4\}
\]

is a basis of \(\mathbb{P}_4 \). Clearly, any polynomial in \(\mathbb{P}_4 \) is a linear combination of elements in \(S \). So, \(S \) spans \(\mathbb{P}_4 \). Now, we prove that \(S \) is linearly
independent. So, let

\[c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 = 0. \]

Since a nonzero polynomial of degree 4 can have at most four roots, it follows \(c_0 = c_1 = c_2 = c_3 = c_4 = 0 \). So, \(S \) is a basis of \(\mathbb{P}_4 \) and \(\dim(\mathbb{P}_4) = 5 \).

Exercise 4.5.18 (Ex. 62. p.231) Determine the dimension of \(\mathbb{M}_{32} \).

Solution: In exercise 4.5.10, we established that

\[S = \{ e_{11}, e_{12}, e_{21}, e_{22}, e_{31}, e_{32} \} \]

is a basis of \(\mathbb{M}_{32} \). So, \(\dim(\mathbb{M}_{32}) = 6 \).

Exercise 4.5.19 (Ex. 72. p.231) Let

\[W = \{ (t, s, t) : s, t \in \mathbb{R} \}. \]

Give a geometric description of \(W \), find a basis of \(W \) and determine the dimension of \(W \).

Solution: First note that \(W \) is closed under addition and scalar multiplication. So, \(W \) is a subspace of \(\mathbb{R}^3 \). Notice, there are two parameters \(s, t \) in the description of \(W \). So, \(W \) can be described by \(x = z \). Therefore, \(W \) represents the plane \(x = z \) in \(\mathbb{R}^3 \).

I suggest (guess) that

\[u = (1, 0, 1), \quad v = (0, 1, 0) \]

will form a basis of \(W \). To see that they are mutually linearly independent, let

\[au + bv = (0, 0, 0); \quad OR \quad (a, b, a) = (0, 0, 0). \]
4.5. BASIS AND DIMENSION

So, $a = 0, b = 0$ and hence they are linearly independent. To see that they span W, we have

$$(t, s, t) = tu + sv.$$

So, $\{u, v\}$ form a basis of W and $\dim(W) = 2$.

Exercise 4.5.20 (Ex. 74. p.232) Let

$$W = \{(5t, -3t, t, t) : t \in \mathbb{R}\}.$$

Find a basis of W and determine the dimension of W.

Solution: First note that W is closed under addition and scalar multiplication. So, W is a subspace of \mathbb{R}^4. Notice, there is only parameters t in the description of W. (So, I expect that $\dim(W) = 1$. I suggest (guess)

$$e = \{(5, -3, 1, 1)\}$$

is a basis of W. This is easy to check. So, $\dim(W) = 1$.
4.6 Rank of a matrix and SoLE

Homework: [Textbook, §4.6 Ex. 7, 9, 15, 17, 19, 27, 29, 33, 35, 37, 41, 43, 47, 49, 57, 63].

Main topics in this section are to define

1. We define row space of a matrix A and the column space of a matrix A.

2. We define the rank of a matrix,

3. We define nullspace $N(A)$ of a homoheneous system $Ax = 0$ of linear equations. We also define the nullity of a matrix A.
Definition 4.6.1 Let $A = [a_{ij}]$ be an $m \times n$ matrix.

1. The n–tuples corresponding to the rows of A are called row vectors of A.

2. Similarly, the m–tuples corresponding to the columns of A are called column vectors of A.

3. The row space of A is the subspace of \mathbb{R}^n spanned by row vectors of A.

4. The column space of A is the subspace of \mathbb{R}^m spanned by column vectors of A.

Theorem 4.6.2 Suppose A, B are two $m \times n$ matrices. If A is row-equivalent of B then row space of A is equal to the row space of B.

Proof. This follows from the way row-equivalence is defined. Since B is row-equivalent to A, rows of B are obtained by (a series of) scalar multiplication and addition of rows of A. So, it follows that row vectors of B are in the row space of A. Therefore, the subspace spanned by row vectors of B is contained in the row space of A. So, the row space of B is contained in the row space of A. Since A is row-equivalent of B, it also follows the B is row-equivalent of A. (We say that the ‘relationship’ of being ‘row-equivalent’ is reflexive.) Therefore, by the same argument, the row space of A is contained in the row space of B. So, they are equal. The proof is complete.

Theorem 4.6.3 Suppose A is an $m \times n$ matrix and B is row-equivalent to A and B is in row-echelon form. Then the nonzero rows of B form a basis of the row space of A.

Proof. From theorem 4.6.2, it follows that row space of A and B are some. Also, a basis of the row space of B is given by the nonzero rows of B. The proof is complete.
Theorem 4.6.4 Suppose \(A \) is an \(m \times n \) matrix. Then the row space and column space of \(A \) have same dimension.

Proof. (You can skip it, I will not ask you to prove this.) Write

\[
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn}
\end{bmatrix}
\]

Let \(v_1, v_2, \ldots, v_m \) denote the row vectors of \(A \) and \(u_1, u_2, \ldots, u_n \) denote the column vectors of \(A \). Suppose that the row space of \(A \) has dimension \(r \) and

\[
S = \{b_1, b_2, \ldots, b_r\}
\]

is a basis of the row space of \(A \). Also, write

\[
b_i = (b_{i1}, b_{i2}, \ldots, b_{im}).
\]

We have

\[
\begin{align*}
v_1 &= c_{11}b_1 + c_{12}b_2 + \cdots + c_{1r}b_r \\
v_2 &= c_{21}b_1 + c_{22}b_2 + \cdots + c_{2r}b_r \\
\vdots & \quad \vdots \quad \vdots \quad \vdots \quad \vdots \\
v_m &= c_{m1}b_1 + c_{m2}b_2 + \cdots + c_{mr}b_r
\end{align*}
\]

Looking at the first entry of each of these \(m \) equations, we have

\[
\begin{align*}
a_{11} &= c_{11}b_{11} + c_{12}b_{21} + \cdots + c_{1r}b_{r1} \\
a_{21} &= c_{21}b_{11} + c_{22}b_{21} + \cdots + c_{2r}b_{r1} \\
a_{31} &= c_{31}b_{11} + c_{32}b_{21} + \cdots + c_{3r}b_{r1} \\
\vdots & \quad \vdots \quad \vdots \quad \vdots \quad \vdots \\
a_{m1} &= c_{m1}b_{11} + c_{m2}b_{21} + \cdots + c_{mr}b_{r1}
\end{align*}
\]

Let \(c_i \) denote the \(i^{th} \) column of the matrix \(C = [c_{ij}] \). So, it follows from these \(m \) equations that

\[
\begin{align*}
u_1 &= b_{11}c_1 + b_{21}c_2 + \cdots + b_{r1}c_r.
\end{align*}
\]
Similarly, looking at the j^{th} entry of the above set of equations, we have

$$u_j = b_{1j}c_1 + b_{2j}c_2 + \cdots + b_{rj}c_r.$$

So, all the columns u_j of A are in $\text{span}(c_1, c_2, \ldots, c_r)$. Therefore, the column space of A is contained in $\text{span}(c_1, c_2, \ldots, c_r)$. It follows from this that the rank of the column space of A has dimension $\leq r = \text{rank} \text{ of the row space of } A$. So,

$$\text{dim}(\text{column space of } A) \leq \text{dim}(\text{row space of } A).$$

Similarly,

$$\text{dim}(\text{row space of } A) \leq \text{dim}(\text{column space of } A).$$

So, they are equal. The proof is complete.

Definition 4.6.5 Suppose A is an $m \times n$ matrix. The dimension of the row space (equivalently, of the column space) of A is called the rank of A and is denoted by $\text{rank}(A)$.

Reading assignment: Read [Textbook, Examples 2-5, p. 234-].

4.6.1 The Nullspace of a matrix

Theorem 4.6.6 Suppose A is an $m \times n$ matrix. Let $N(A)$ denote the set of solutions of the homogeneous system $Ax = 0$. Notationally:

$$N(A) = \{x \in \mathbb{R}^n : Ax = 0\}.$$

Then $N(A)$ is a a subspace of \mathbb{R}^n and is called the nullspace of A. The dimension of $N(A)$ is called the nullity of A. Notationally:

$$\text{nullity}(A) := \text{dim}(N(A)).$$
Proof. First, \(N(A) \) is nonempty, because \(0 \in N(A) \). By theorem 4.3.3, we need only to check that \(N(A) \) is closed under addition and scalar multiplication. Suppose \(x, y \in N(A) \) and \(c \) is a scalar. Then

\[
Ax = 0, \quad Ay = 0, \quad \text{so} \quad A(x + y) = Ax + Ay = 0 + 0 = 0.
\]

So, \(x + y \in N(A) \) and \(N(A) \) is closed under addition. Also

\[
A(cx) = c(Ax) = c0 = 0.
\]

Therefore, \(cx \in N(A) \) and \(N(A) \) is closed under scalar multiplication.

Theorem 4.6.7 Suppose \(A \) is an \(m \times n \) matrix. Then

\[
\text{rank}(A) + \text{nullity}(A) = n.
\]

That means, \(\text{dim}(N(A)) = n - \text{rank}(A) \).

Proof. Let \(r = \text{rank}(A) \). Let \(B \) be a matrix row equivalent to \(A \) and \(B \) is in Gauss-Jordan form. So, only the first \(r \) rows of \(B \) are nonzero. Let \(B' \) be the matrix formed by top \(r \) (i.e. nonzero) rows of \(B \). Now,

\[
\text{rank}(A) = \text{rank}(B) = \text{rank}(B'), \quad \text{nullity}(A) = \text{nullity}(B) = \text{nullity}(B').
\]

So, we need to prove \(\text{rank}(B') + \text{nullity}(B') = n \). Switching columns of \(B' \) would only mean re-labeling the variables (like \(x_1 \mapsto x_1, x_2 \mapsto x_3, x_3 \mapsto x_2 \)). In this way, we can write \(B' = [I_r, C] \), where \(C \) is a \(r \times n - r \) matrix and corresponds to the variables, \(x_{r+1}, \ldots, x_n \). The homogeneous system corresponding to \(B' \) is given by:

\[
\begin{align*}
x_1 + c_{11}x_{r+1} + c_{12}x_{r+2} + \cdots + c_{1,n-r}x_n &= 0 \\
x_2 + c_{21}x_{r+1} + c_{22}x_{r+2} + \cdots + c_{2,n-r}x_n &= 0 \\
\vdots &\vdots \ddots \ddots \ddots \\
x_r + c_{r1}x_{r+1} + c_{r2}x_{r+2} + \cdots + c_{r,n-r}x_n &= 0
\end{align*}
\]

The solution space \(N(B') \) has \(n - r \) parameters. A basis of \(N(B') \) is given by

\[
S = \{E_{r+1}, E_{r+2}, \ldots, E_n\}
\]
4.6. RANK OF A MATRIX AND SOLE

where

\[E_{r+1} = -(c_{11}e_1 + c_{21}e_2 + \cdots + c_{r1}e_r) + e_{r+1} \text{ so on} \]

and \(e_i \in \mathbb{R}^n \) is the vector with 1 at the \(i^{th} \) place and 0 elsewhere. So, \(\text{nullity}(B') = \text{cardinality}(S) = n - r \). The proof is complete. \(\blacksquare \)

Reading assignment: Read [Textbook, Examples 6, 7, p. 241-242].

4.6.2 Solution of SoLE

Given a system of linear equations \(Ax = b \), where \(A \) is an \(m \times n \) matrix, we have the following:

1. Corresponding to such a system \(Ax = b \), there is a homogeneous system \(Ax = 0 \).
2. The set of solutions \(N(A) \) of the homogeneous system \(Ax = 0 \) is a subspace of \(\mathbb{R}^n \).
3. In contrast, if \(b \neq 0 \), the set of solutions of \(Ax = b \) is not a subspace. This is because \(0 \) is not a solution of \(Ax = b \).
4. The system \(Ax = b \) may have many solutions. Let \(x_p \) denote a PARTICULAR one such solutions of \(Ax = b \).
5. The we have

Theorem 4.6.8 Every solution of the system \(Ax = b \) can be written as

\[x = x_p + x_h \]

where \(x_h \) is a solution of the homogeneous system \(Ax = 0 \).

Proof. Suppose \(x \) is any solution of \(Ax = b \). We have

\[Ax = b \text{ and } Ax_p = b. \]
Write $x_h = x - x_p$. Then
\[Ax_h = A(x - x_p) = Ax - Ax_p = b - b = 0. \]
So, x_h is a solution of the homogeneous system $Ax = 0$ and
\[x = x_p + x_h. \]
The proof is complete.

Theorem 4.6.9 A system $Ax = b$ is consistent if and only if b is in the column space of A.

Proof. Easy. It is, in fact, interpretation of the matrix multiplication $Ax = b$.

Reading assignment: Read [Textbook, Examples 8, 9, p. 244-245].

Theorem 4.6.10 Suppose A is a square matrix of size $n \times n$. Then the following conditions are equivalent:

1. A is invertible.
2. $Ax = b$ has unique solution for every $m \times 1$ matrix b.
3. $Ax = 0$ has only the trivial solution.
4. A is row equivalent to the identity matrix I_n.
5. $\det(A) \neq 0$.
6. $Rank(A) = n$.
7. The n row vectors of A are linearly independent.
8. The n column vectors of A are linearly independent.
Exercise 4.6.11 (Ex. 8, p. 246) Let

\[A = \begin{bmatrix} 2 & -3 & 1 \\ 5 & 10 & 6 \\ 8 & -7 & 5 \end{bmatrix}. \]

(a) Find the rank of the matrix \(A \). (b) Find a basis of the row space of \(A \), (c) Find a basis of the column space of \(A \).

Solution: First, the following is the row Echelon form of this matrix (use TI):

\[B = \begin{bmatrix} 1 & -.875 & .625 \\ 0 & 1 & .2 \\ 0 & 0 & 0 \end{bmatrix}. \]

The rank of \(A \) is equal to the number of nonzero rows of \(B \). So, \(\text{rank}(A) = 2 \).

A basis of the row space of \(A \) is given by the nonzero rows of \(B \). So,

\[\mathbf{v}_1 = (1, -.875, .625) \quad \text{and} \quad \mathbf{v}_2 = (0, 1, .2) \]

form a basis of the row space of \(A \).

The column space of \(A \) is same as the row space of the transpose \(A^T \). We have

\[A^T = \begin{bmatrix} 2 & 5 & 8 \\ -3 & 10 & -7 \\ 1 & 6 & 5 \end{bmatrix}. \]

The following is the row Echelon form of this matrix (use TI):

\[C = \begin{bmatrix} 1 & -\frac{10}{3} & \frac{7}{3} \\ 0 & 1 & 0.2857 \\ 0 & 0 & 0 \end{bmatrix}. \]
A basis of the column space of A is given by the nonzero rows of C, (to be written as column):

$$u_1 = \begin{bmatrix} \frac{10}{3} \\ \frac{1}{3} \\ 3 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 0 \\ 1 \\ 0.2857 \end{bmatrix}.$$

Exercise 4.6.12 (Ex. 16, p. 246) Let

$$S = \{(1, 2, 2), (-1, 0, 0), (1, 1, 1)\} \subseteq \mathbb{R}^3.$$

Find a basis of of the subspace spanned by S.

Solution: We write these rows as a matrix:

$$A = \begin{bmatrix} 1 & 2 & 2 \\ -1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

Now the row space of A will be the same as the subspace spanned by S. So, we will find a basis of the row space of A. Use TI and we get the row Echelon form of A is given by

$$B = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

So, a basis is:

$$u_1 = (1, 2, 2), \quad u_2 = (0, 1, 1).$$

Remark. The answers regrading bases would not be unique. The following will also be a basis of this space:

$$v_1 = (1, 2, 2), \quad v_2 = (1, 0, 0).$$
Exercise 4.6.13 (Ex. 20, p. 246) Let

\[S = \{(2, 5, -3, -2), (-2, -3, 2, -5), (1, 3, -2, 2), (-1, -5, 3, 5)\} \subseteq \mathbb{R}^4. \]

Find a basis of of the subspace spanned by \(S \).

Solution: We write these rows as a matrix:

\[
A = \begin{bmatrix}
2 & 5 & -3 & -2 \\
-2 & -3 & 2 & -5 \\
1 & 3 & -2 & 2 \\
-1 & -5 & 3 & 5
\end{bmatrix}.
\]

Now the row space of \(A \) will be the same as the subspace spanned by \(S \). So, we will find a basis of the row space of \(A \).

Use TI and we get the row Echelon form of \(A \) is given by

\[
B = \begin{bmatrix}
1 & 2.5 & -1.5 & -1 \\
0 & 1 & -0.6 & -1.6 \\
0 & 0 & 1 & -19 \\
0 & 0 & 0 & 0
\end{bmatrix}.
\]

So, a basis is:

\[
\{u_1 = (1, 2.5, -1.5, -1), \quad u_2 = (0, 1, -0.6, -1.6), \quad u_3 = (0, 0, 1, -19)\}.
\]

Exercise 4.6.14 (Ex. 28, p. 247) Let

\[
A = \begin{bmatrix}
3 & -6 & 21 \\
-2 & 4 & -14 \\
1 & -2 & 7
\end{bmatrix}.
\]

Find the dimension of the solution space of \(Ax = 0 \).
Solution: Step-1: Find rank of A : Use TI, the row Echelon form of A is

$$B = \begin{bmatrix} 1 & -2 & 7 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

So, the number of nonzero rows of B is $\text{rank}(A) = 1$.

Step-2: By theorem 4.6.7, we have

$$\text{rank}(A) + \text{nullity}(A) = n = 3,$$

so $$\text{nullity}(A) = 3 - 1 = 2.$$

That means that the solution space has dimension 2.

Exercise 4.6.15 (Ex. 32, p. 247) Let

$$A = \begin{bmatrix} 1 & 4 & 2 & 1 \\ 2 & -1 & 1 & 1 \\ 4 & 2 & 1 & 1 \\ 0 & 4 & 2 & 0 \end{bmatrix}.$$

Find the dimension of the solution space of $Ax = 0$.

Solution: Step-1: Find rank of A : Use TI, the row Echelon form of A is

$$B = \begin{bmatrix} 1 & .5 & .25 & .25 \\ 0 & 1 & .5 & 0 \\ 0 & 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

So, the number of nonzero rows of B is $\text{rank}(A) = 4$.

Step-2: By theorem 4.6.7, we have

$$\text{rank}(A) + \text{nullity}(A) = n = 4,$$

so $$\text{nullity}(A) = 4 - 4 = 0.$$

That means that the solution space has dimension 0. This also means that the homogeneous system $Ax = 0$ has only the trivial solution.
Exercise 4.6.16 (Ex. 38 (edited), p. 247) Consider the homogeneous system

\[
\begin{align*}
2x_1 + 2x_2 + 4x_3 - 2x_4 &= 0 \\
x_1 + 2x_2 + x_3 + 2x_4 &= 0 \\
-x_1 + x_2 + 4x_3 - x_4 &= 0
\end{align*}
\]

Find the dimension of the solution space and give a basis of the same.

Solution: We follow the following steps:

1. First, we write down the coefficient matrix:

\[
A = \begin{bmatrix}
2 & 2 & 4 & -2 \\
1 & 2 & 1 & 2 \\
-1 & 1 & 4 & -1
\end{bmatrix}
\]

2. Use TI, the Gauss-Jordan form of the matrix is

\[
B = \begin{bmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -1
\end{bmatrix}
\]

3. The rank of \(A\) is number of nonzero rows of \(B\). So,

\[rank(A) = 3, \quad by \ \text{thm. 4.6.7}, \quad nullity(A) = n - rank(A) = 4 - 3 = 1.\]

So, the solution space has dimension 1.

4. To find the solution space, we write down the homogeneous system corresponding to the coefficient matrix \(B\). So, we have

\[
\begin{align*}
x_1 & - x_4 = 0 \\
x_2 & + 2x_4 = 0 \\
x_3 & - x_4 = 0
\end{align*}
\]
5. Use $x_4 = t$ as parameter and we have

\[x_1 = t, \quad x_2 = -2t, \quad x_3 = t, \quad x_4 = t. \]

6. So the solution space is given by

\[\{(t, -2t, t, t) : t \in \mathbb{R}\}. \]

7. A basis is obtained by substituting $t = 1$. So

\[u = (1, -2, 1, 1) \]

forms a basis of the solution space.

Exercise 4.6.17 (Ex. 39, p. 247) Consider the homogeneous system

\[
\begin{align*}
9x_1 - 4x_2 - 2x_3 - 20x_4 &= 0 \\
12x_1 - 6x_2 - 4x_3 - 29x_4 &= 0 \\
3x_1 - 2x_2 - 7x_4 &= 0 \\
3x_1 - 2x_2 - x_3 - 8x_4 &= 0
\end{align*}
\]

Find the dimension of the solution space and give a basis of the same.

Solution: We follow the following steps:

1. First, we write down the coefficient matrix:

\[
A = \begin{bmatrix}
9 & -4 & -2 & -20 \\
12 & -6 & -4 & -29 \\
3 & -2 & 0 & -7 \\
3 & -2 & -1 & -8
\end{bmatrix}
\]
2. Use TI, the Gauss-Jordan form of the matrix is

\[
B = \begin{bmatrix}
1 & 0 & 0 & -\frac{4}{3} \\
0 & 1 & 0 & 1.5 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

3. The rank of \(A \) is the number of nonzero rows of \(B \). So,

\(\text{rank}(A) = 3 \), \quad \text{by thm. 4.6.7}, \quad \text{nullity}(A) = n - \text{rank}(A) = 4 - 3 = 1. \)

So, the solution space has dimension 1.

4. To find the solution space, we write down the homogeneous system corresponding to the coefficient matrix \(B \). So, we have

\[
\begin{align*}
 x_1 & -\frac{4}{3}x_4 = 0 \\
 x_2 & +1.5x_4 = 0 \\
 x_3 & +x_4 = 0 \\
 0 & = 0
\end{align*}
\]

5. Use \(x_4 = t \) as parameter and we have

\[
\begin{align*}
 x_1 & = \frac{4}{3}t, \\
 x_2 & = -1.5t, \\
 x_3 & = -t, \\
 x_4 & = t.
\end{align*}
\]

6. So the solution space is given by

\[
\left\{ \left(\frac{4}{3}t, -1.5t, -t, t \right) : t \in \mathbb{R} \right\}.
\]

7. A basis is obtained by substituting \(t = 1 \). So

\[
u = \left(\frac{4}{3}, -1.5, -1, 1 \right)
\]

forms a basis of the solution space.
Exercise 4.6.18 (Ex. 42, p. 247) Consider the system of equations

\[
\begin{align*}
3x_1 - 8x_2 + 4x_3 &= 19 \\
-6x_2 + 2x_3 + 4x_4 &= 5 \\
5x_1 + 22x_3 + x_4 &= 29 \\
x_1 - 2x_2 + 2x_3 &= 8
\end{align*}
\]

Determine, if this system is consistent. If yes, write the solution in the form \(\mathbf{x} = \mathbf{x}_h + \mathbf{x}_p \) where \(\mathbf{x}_h \) is a solution of the corresponding homogeneous system \(A\mathbf{x} = \mathbf{0} \) and \(\mathbf{x}_p \) is a particular solution.

Solution: We follow the following steps:

1. To find a particular solution, we write the augmented matrix of the nonhomogeneous system:

\[
\begin{bmatrix}
3 & -8 & 4 & 0 & 19 \\
0 & -6 & 2 & 4 & 5 \\
5 & 0 & 22 & 1 & 29 \\
1 & -2 & 2 & 0 & 8
\end{bmatrix}
\]

The Gauss-Jordan form of the matrix is

\[
\begin{bmatrix}
1 & 0 & 0 & -2 & 0 \\
0 & 1 & 0 & -0.5 & 0 \\
0 & 0 & 1 & 0.5 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

The last row suggests \(0 = 1 \). So, the system is not consistent.

Exercise 4.6.19 (Ex. 44, p. 247) Consider the system of equations

\[
\begin{align*}
2x_1 - 4x_2 + 5x_3 &= 8 \\
-7x_1 + 14x_2 + 4x_3 &= -28 \\
3x_1 - 6x_3 + x_3 &= 12
\end{align*}
\]
4.6. RANK OF A MATRIX AND SOLE

Determine, if this system is consistent. If yes, write the solution in the form \(\mathbf{x} = \mathbf{x}_h + \mathbf{x}_p \) where \(\mathbf{x}_h \) is a solution of the corresponding homogeneous system \(A\mathbf{x} = \mathbf{0} \) and \(\mathbf{x}_p \) is a particular solution.

Solution: We follow the following steps:

1. First, the augmented matrix of the system is

\[
\begin{bmatrix}
2 & -4 & 5 & 8 \\
-7 & 14 & 4 & -28 \\
3 & -6 & 1 & 12
\end{bmatrix}.
\]

Its Gauss-Jordan form is

\[
\begin{bmatrix}
1 & -2 & 0 & 4 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}.
\]

This corresponds to the system

\[
\begin{align*}
x_1 - 2x_2 &= 4 \\
x_3 &= 0 \\
0 &= 0
\end{align*}
\]

The last row indicates that the system is consistent. We use \(x_2 = t \) as a parameter and we have

\[
x_1 = 4 + 2t, \quad x_2 = t, \quad x_3 = 0.
\]

Taking \(t = 0 \), a particular solution is

\[
\mathbf{x}_p = (4, 0, 0).
\]

2. Now, we proceed to find the solution of the homogeneous system

\[
\begin{align*}
2x_1 - 4x_2 + 5x_3 &= 0 \\
-7x_1 + 14x_2 + 4x_3 &= 0 \\
3x_1 - 6x_3 + x_3 &= 0
\end{align*}
\]
(a) The coefficient matrix
\[A = \begin{bmatrix} 2 & -4 & 5 \\ -7 & 14 & 4 \\ 3 & -6 & 1 \end{bmatrix}. \]

(b) Its Gauss-Jordan form is
\[B = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}. \]

(c) The homogeneous system corresponding to \(B \) is
\[\begin{align*}
 x_1 - 2x_2 &= 0 \\
 x_3 &= 0 \\
 0 &= 0
\end{align*} \]

(d) We use \(x_2 = t \) as a parameter and we have
\[x_1 = 2t, \quad x_2 = t, \quad x_3 = 0. \]

(e) So, in parametric form
\[x_h = (2t, t, 0). \]

3. Final answer is: With \(t \) as parameter, any solutions can be written as
\[x = x_h + x_p = (2t, t, 0) + (4, 0, 0). \]

Exercise 4.6.20 (Ex. 50, p. 247) Let
\[A = \begin{bmatrix} 1 & 3 & 2 \\ -1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \]
Determine, if \(b \) is in the column space of \(A \).

Solution: The question means, whether the system \(Ax = b \) has a solutions (i.e. *is consistent*).

Accordingly, the augmented matrix of this system \(Ax = b \) is

\[
\begin{bmatrix}
1 & 3 & 2 & 1 \\
-1 & 1 & 2 & 1 \\
0 & 1 & 1 & 0
\end{bmatrix}
\]

The Gauss-Jordan form of this matrix is i

\[
\begin{bmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

The last row indicates that the system is not consistent. So, \(b \) is not in the column space of \(A \).